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Introduction: integrative 
approaches for understanding 
the genetics of gene expression



Understanding regulatory variation
Identify the effects of regulatory genetic variation on gene 
expression and high-level phenotype
• Computational methods development
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Non-coding genetic variation
Most variants, and most disease-associated variants, are non-coding

Challenges:
• Hard to predict effects of non-coding variants from sequence
• For disease-associated non-coding variants, difficult to interpret 

functional mechanism or design interventions
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Context specificity

• Many factors modulate regulatory 
genetic effects

• Disease etiology may involve specific 
cell types, developmental stages, or 
environmental responses

• Need for tailored data and methods…
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The GTEx project: tissue-specific gene expression

• 948 donors with WGS
• RNA-seq in 54 tissues
• Cis- and trans-eQTLs in each tissue
• Huge catalog of eQTLs reveals 

regulatory biology
• Intersection with genetics of disease
• https://www.sciencemag.org/collect

ions/genetic-variation

https://www.sciencemag.org/collections/genetic-variation


GTEx enabled dozens of creative projects beyond eQTL study

True for other large-scale datasets as well:

Depression Genes and Networks
ENCODE
Roadmap Epigenomics
UKBB
HapMap and 1000 Genomes
GEUVADIS
etc



Lab projects: ML + diverse transcriptomic data

Cardiomyocytes

Epicardium

iPSC

Single-cell and dynamic eQTL models

Disease and multi-omic integrative analysis Large-scale network inference and integration
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ML for rare genetic variation



Motivation – Rare variation is abundant and 
mostly uncharacterized

• Individual genomes have a median of approximately 
50,000 rare variants with MAF below 0.01

• Rare variants are enriched for deleterious 
properties, contribute to rare and complex disease

• Evaluating rare variants from whole genome 
sequencing remains very challenging

• Approximately half of rare disease patients go 
undiagnosed with current approaches 

Number of rare variants (MAF < .01)

Li et al. Nature 2017



Project goals

• Explore the impact of rare, regulatory variation

• Identify complex effects of rare variants from RNA-seq 

• Integrative model to prioritize rare regulatory variants from personal 
genomes supplemented with RNA-seq

ASNP



Analysis of rare variation in GTEx data

• 714 individuals of European ancestry:
• RNA-seq across multiple tissues
• Whole genome sequencing

GTEx Project v8 rare variant analysis



T T

Using RNA-seq to help prioritize functional rare variants

Hypothesis:
• Functional variants cause disruption at a cellular level
• Rare regulatory variation will result in unusual expression of nearby genes
Simple approach:
• Identify individuals whose gene expression is far from the population average

Li et al., Nature 2017
Li et al., AJHG 2014
Zeng et al.,PLoS Genet 2015
Zhao et al., AJHG 2016
Cummings et al., STM, 2017

Outlier criterion
|z| > T

Total Expression Outliers



• Both rare and common genetic variants affecting splicing have been 
implicated in disease

• Abnormal total gene expression simply goes up or down compared to 
normal

• So how to define an outlier over a multi-dimensional space of possible 
splice junctions?
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Expression

Cummings et al, STM, 2017
Kremer et al, Nature 2017

Alternative splicing outliers



SPOT (SPlicing Outlier deTection)

X
d

Junction counts

J

N

N – Number of individuals
J – Number of observed 
junctions

LeafCutter quantification

X1,…Xj ~ Multinomial(p1,… pj)
p1,… pj ~ Dirichlet(α1,… αj)

Estimate parameters of Dirichlet
multinomial (DM) distribution 

from N samples

Compute Mahalanobis distance (MD) 
for each sample based on estimated 

DM mean and covariance

Ferraro*, Strober* et al, Science 2020



Outliers are enriched for distinct functional classes of rare variants
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Machine learning for personal genomics

Prediction function Y = f(X; θ)

Personal genomic predictions
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• CADD (Kircher et al, Nature, 2014)
• GWAVA (Ritchie et al, Nature Methods, 2014)
• BASSET (Kelley et al, Genome Research, 2016)
• DeepSEA (Zhou et al, Nature Methods, 2015)



Diverse genomic feature data available
ENCODE Project Consortium. Plos Biology 2011.

• Regulatory elements
from Roadmap, 
ENCODE

• Conservation scores
• Transcription factor 

binding sites
• CpG sites
• Summary scores from 

existing WGS models 



Machine learning for personal genomics

Chr7:  AAAGTC
Chr16: GCGACC
..
Chr21: GGCAAT

Hypothesis: a rare variant that is impacting health will also 
have a molecular signature in the affected person
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Machine learning for personal genomics

Chr7:  AAAGTC
Chr16: GCGACC
..
Chr21: GGCAAT

Hypothesis: a rare variant that is impacting health will also 
have a molecular signature in the affected person
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Personal transcriptomic data
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Prediction function Y = f(X; θ)
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Watershed model integrates multiple molecular 
signals

Model each gene, in each individual (N instances)

G Genomic features of rare variants from 
whole genome sequence

Zt Latent variable of whether this rare 
variant has a regulatory effect on 
molecular phenotype t, ising model

Et Signal from molecular phenotype t (outlier 
status) – ASE, splicing, total expression

Extensible to any molecular signal or data type

G

Z1 Zt ZT… …

E1 ET……

𝜷1 𝜷t
𝜷T

𝜱1 𝜱T

𝞗 𝞗

𝞗

N
Ferraro*, Strober* et al, Science 2020



Watershed model integrates multiple molecular 
signals

G
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Unsupervised: Z unobserved, does not 
require labeled training data 

Efficient: optimize model parameters using 
EM with approximate inference 

Provides posterior probability of impact for 
each rare variant (Zt) given any observed 
WGS and RNA-seq data in a new patient

Ferraro*, Strober* et al, Science 2020



Watershed: RNA improves prediction over WGS

• Predicting variant effects in held out individuals (N=2 analysis)
• Watershed, utilizing RNA-seq, offers large improvements over WGS alone (“GAM”)

• Replicated in independent data, and several variants validated with CRISPR-Cas9

Ferraro*, Strober* et al, Science 2020
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Watershed dramatically improves identification of 
rare variants with high risk of functional impact
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Conclusions

• Rare genetic variants coincide with large transcriptomic changes

• Integrative model Watershed uses diverse signals from RNA, providing 
improvements in rare variant prioritization over only WGS
• Extensible to multi-omic and other data types

• https://science.sciencemag.org/content/369/6509/eaaz5900
• https://github.com/BennyStrobes/SPOT, 

https://github.com/BennyStrobes/Watershed

https://science.sciencemag.org/content/369/6509/eaaz5900
https://github.com/BennyStrobes/Watershed


Parting thoughts on enabling ML in genomics

• Key resources and opportunities:
• Large, accessible datasets enable diverse creative applications 
• Diverse data types
• Flexible computational resources (increasing interest in cloud)
• Tools and software for powerful ML frameworks (deep learning, probabilistic models, 

traditional ML)

• Challenges:
• Confounders and technical artifacts (extensive metadata!)
• Training researchers for highly interdisciplinary work
• Vetting and maintaining computational tools in academia
• Reproducibility
• Interpretability
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