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Science in general and genomic science in particular are 
centrally concerned with the discovery of causal relationships in 
order to:

• Understand mechanisms 
• Understand the molecular details of transcription regulation

• Predict the results of interventions
• Predict the cellular effects of a gene modification

• Control events
• Control the overexpression of a genomic driver of cancer that is due to 

copy number amplification

Causal Machine Learning
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• Traditional causal structure learning algorithms learn 
the causal relationships that exists in a population

§ Often it is a mixture of causal relationships 
§ Only the strongest, shared causal relationships may 

be learned
• Learning causal structure that is specific to a given 

instance (e.g., a patient) is an important but 
understudied problem 

Doing so allows us to understand more precisely the causal 
relationships of the instance, which more exactly guides 
how to maintain health and cure disease in the instance.

Personalized (Instance-Specific) 
Causal Machine Learning
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• Identifying driver somatic genomic alterations (SGAs) 
of an individual tumor is an important task within 
personalized cancer medicine

• A tumor usually hosts hundreds to thousands of SGAs 
(e.g., ~400 in breast cancer)

̶ A few are drivers (causes cancerous behavior in a tumor)

̶ Many are passengers (no causal influence on cancer 
behavior)

• Current knowledge of cancer driver genes is 
incomplete

̶ >10% of tumors have no known drivers

Example: Identifying Tumor-Specific 
Genomic Drivers of Cancer



From Big Data to a Model of an Individual Tumor 

TCGA data
Patient data

TCI

Patient (tumor)-specific
causal model



TCGA Data that We Used

Types of data used
DNA data

Whole exome data
Copy number variation data

mRNA expression data

Variables we defined on TCGA data
Let SGAi denote the somatic genomic alteration status of genei.

SGAi = 1 if genei contains any nonsynonymous somatic mutations or genei has 
an abnormal degree of copy number variation; 
otherwise SGAi = 0.

Let DEGi denote the differentially expressed gene status of genei.

DEGi = 1 if genei is significantly differentially expressed, relative to a baseline; 
otherwise, DEGi = 0.



• Infer causal relationships 
between SGAs and the 
molecular phenotypes 
observed in a given tumor
• Transcriptome: 

differentially expressed 
genes (DEGs)
• Proteomics
• Metabolomics
• Immunology markers

• The SGAs that causally 
regulate oncogenic 
phenotypes are drivers of 
the tumor 
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Tumor-specific Causal Inference (TCI) Algorithm

SGAs:

(endo)phenotypes:



TCI Algorithm*

• Uses a bipartite graph representation
• Searches the graph for somatic genomic alterations (SGAs) that account 

for differentially expressed genes (DEGs) involved in an oncogenic 
process. 

• Uses a Bayesian evaluation measure, which is tumor specific                  
(and therefore supports precision/personalized modeling)

* Cai C, Cooper GF, Lu KN, Ma X, Xu S, Zhao Z, Chen X, Xue Y, Lee AV, Clark N, Chen V. Systematic discovery of the 
functional impact of somatic genome alterations in individual tumors through tumor-specific causal inference. 
PLOS Computational Biology, 15 (2019).
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• Uses a bipartite graph representation
• Searches the graph for somatic genomic alterations (SGAs) that account 

for differentially expressed genes (DEGs) involved in an oncogenic 
process. 

• Uses a Bayesian evaluation measure, which is tumor specific
• Makes the biologically plausible “mutually exclusivity” assumption that 

each DEG in a single tumor has only one driver (explaining away)
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MPL

PI3K/AKT Pathway Regulating MPL
Expression



eQTL Analysis

MPL



MPL

TCI Analysis of Tumor 18-3411



MPL

TCI Analysis of Tumor BS-A0T9



MPL

TCI Analysis of Tumor 12-3650



MPL

TCI Analysis of Tumor D8-A141



Results of Applying TCI to TCGA Pan-Cancer Data

frequency 
TCI calls a 

gene a 
driver in 

TCGA

P(TCI calls a gene a driver | the gene is an SGA)
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Experimental Investigation of CSMD3*

• Used a gastric cancer cell line in which CSMD3 is 
highly expressed

• Knocked down (attenuated) CSMD3 expression 
with two different siRNAs

* Cai C, Cooper GF, Lu KN, Ma X, Xu S, Zhao Z, Chen X, Xue Y, Lee AV, Clark N, Chen V. Systematic discovery of the 
functional impact of somatic genome alterations in individual tumors through tumor-specific causal inference. 
PLOS Computational Biology, 15 (2019).



Results of Knocking Down CSMD3

** p < 0.01            **** p < 0.0001



Results of Knocking Down CSMD3

** p < 0.01            **** p < 0.0001
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• COSMIC is an online database of somatically acquired 
mutations found in human cancer 
https://cancer.sanger.ac.uk/cosmic

• CSMD3 is now classified as a Tier 2 COSMIC cancer gene.

• Tier 2 genes are genes with strong indications of a role in 
cancer but with less extensive available evidence. These are 
generally more recent targets, where the body of evidence 
supporting their role in cancer is still emerging.

CSMD3 in COSMIC
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• There has been prior work on

• representing and learning context-specific conditional independence [1-7] 

• learning instance-specific models [8, 9]

• learning instance-specific causal models[10,11]

• To our knowledge, there has not been prior work on Bayesian methods to 
learn instance-specific causal Bayesian networks, as presented here.

Representative Related Work

1. Boutilier C, et al. Context-specific independence in Bayesian networks . UAI (2013).
2. Chickering DM, et al. A Bayesian approach to learning Bayesian networks with local structure. UAI (1997).
3. Friedman N, et al. Learning Bayesian networks with local structure . UAI (1996).
4. Geiger D, et al. Knowledge representation and inference in similarity networks and Bayesian multinets . Artificial Intelligence (1996).
5. Hyttinen A, et al. Structure learning for Bayesian networks over labeled DAGs. Conference on Probabilistic Graphical Models (2018). 
6. Pensar J, et al. Labeled directed acyclic graphs: a generalization of context-specific independence in directed graphical models. KDD (2015). 
7. Zou Y, et al. Representing local structure in Bayesian networks by Boolean functions . Pattern Recognition Letters (2017).
8. Lengerich B, et al. Learning sample-specific models with low-rank personalized regression. NeurIPS (2019). 
9. Liu X, et al. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Research (2016). 
10. Li X, et al. Learning subject-specific directed acyclic graphs with mixed effects structural equation models from observational data . Frontiers in 

Genetics (2018).
11. Kuijjer ML, et al. Estimating sample-specific regulatory networks. iScience (2019).
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• TCI estimates genomic causes of (endo)phenotypes
• We are extending it to include embeddings that provide additional 

control for confounding

• We have also developed a method called iGFCI for learning 
instance-specific pathways between genomic causes and the 
resulting (endo)phenotypes*.

• iGFCI models for the possibility that there are latent confounders of 
the measured variables.

• We have recently applied iGFCI to investigate molecular pathways 
involved in immune regulation.

Extensions

* Jabbari F, Visweswaran S, Cooper GF. Instance-specific Bayesian network structure learning. 
In: Proceedings of the Conference on Probabilistic Graphical Models (2018).
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Ideal types of data to fully leverage the potential for instance 
specific causal machine learning include those that are:

• tissue specific

• include cells in the microenvironment of the disease tissue

• include multiple types of measurements within single cells

Comments
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• Instance specific causal machine learning is a promising tool 
for analyzing genomic data.

• The method is applicable to many types of genome-
(endo)phenome analysis, not just cancer.

• Additional development and evaluation are needed and are 
ongoing.

Conclusions
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Biology, 15 (2019). 

Jabbari F, Visweswaran S, Cooper GF. Instance-specific Bayesian network structure 
learning. In: Proceedings of the Conference on Probabilistic Graphical Models 
(2018).

*

References



Acknowledgements

• Thanks to Drs. Fattaneh Jabbari and Chunhui Cai for slides 
and figures that they contributed to this talk.

• Thanks to Dr. Shyam Visweswaran, Dr. Cai, and Dr. Jabbari 
for their central conceptual and technical contributions to 
this research.

• Support for this work was provided by grant 
U54HG008540 from the National Institutes of Health (NIH) 
and by grant IIS-1636786 from the National Science 
Foundation. 



Thank you

gfc@pitt.edu
xinghua@pitt.edu

www.ccd.pitt.edu




