

#### **Genomics, Genetics, and the Eye**

Michael F. Chiang, M.D. Director, National Eye Institute National Institutes of Health Twitter: @NEIDirector

National Advisory Council for Human Genome Research September 13, 2021

### **About NEI**



#### What Was My Background?

- Applications of biomedical informatics to clinical care & research
- Telehealth (retinopathy of prematurity): validation  $\rightarrow$  standard of care
- Artificial intelligence (ROP): FDA Breakthrough Status
- Genotype-phenotype correlation in ROP
- Data science & "big data":
  - Research program involving EHR implementation, design, efficiency
  - American Academy of Ophthalmology Medical Information Technology Committee: leadership role in national EHR implementation plan
  - AAO IRIS Registry: leadership role in development & implementation (now ~500M eye exams from ~80M unique patients)



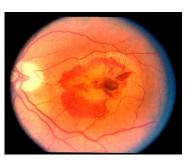
### Why Does Vision Work Matter?

- Impact on quality of life: blindness is among conditions that Americans fear most, work that matters
  - Daily living: driving, recognizing people, reading
  - How we experience the world, link to emotion
  - Risk of isolation, depression, acceleration of dementia
- Impact on science: enormous, broad
  - NEI: 8 Nobel Prize winners (initially Hubel & Wiesel)
  - Many seminal innovations occurred first in eye & visual system → accessible setting for generalizable research





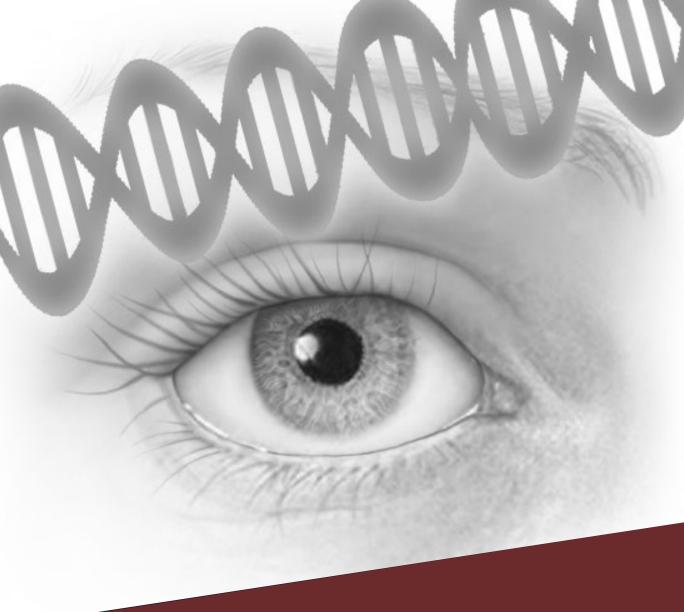



# Public Health Challenges of Vision & Eye Care

- How many people are affected by vision problems?
  - **US**: 150M with vision limitation, 7.1M with low vision ( $\leq 20/40$ ), 1.1M with blindness ( $\leq 20/200$ ), annual economic burden \$50B
  - **Global**: 250M with low vision ( $\leq 20/40$ ) or blindness ( $\leq 20/200$ )
  - Increasing as population ages
- Public health & economic impact to society: lost productivity, falls, depression, accelerated dementia
- Eye disease: ranked 9<sup>th</sup> in **global disease** burden (after perinatal conditions, lower respiratory infections, HIV/AIDS, unipolar depressive disorders, diarrheal diseases...)





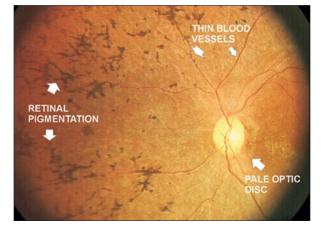

Macular degeneration





Eye Diseases Prevalence Research Group. Arch Ophthalmol 2004; 122:495-505.
Frick KD, et al. Arch Ophthalmol 2007; 125:544-50.
Flaxman AD, et al. JAMA Ophthalmol 2021 May 13:e210527.

Some of What We've Done: Genetics & Genomics






## Innovation: Mendelian Disorders (Rare Retinal Dystrophies)

- Opportunities for collaboration in gene-based (in addition to morphological)

| nomenclature?              |                                                                                                                                                           |                                                                                |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Pathway                    | Genes causing retinal dystrophy                                                                                                                           | Phenotypes                                                                     |  |  |
| Phototransduction          | CNGA1, CNGB1, GUCA1B, RHO, PDE6A, PDE6B, PDE6C, SAG, CNGB3                                                                                                | adRP, arRP, adMD, dCSNB, Oguchi<br>disease, arCORD                             |  |  |
| Visual cycle               | ABCA4, RGR, RLBP1, BEST1, IRBP, RPE65, CA4, RDH12, IDH3B, ELOVL4, PITPNM3, GUCY2D                                                                         | adRP, arRP, arMD, adMD, arCORD, adCORD, arLCA, choroidal sclerosis             |  |  |
| Phagocytosis of ROS        | MERTK                                                                                                                                                     | arRP                                                                           |  |  |
| Retinal development        | CRX, NRL, NR2E3, SEMA4A, RAX2, PROM1, TSPAN12, TULP1, OTX2                                                                                                | adRP, arRP, adLCA, arLCA, adCORD, adMD, FEVR                                   |  |  |
| Ciliary structure          | CEP290, RP1, USH2A, CRB1, RP2, RPGR, RPGRIP1, LCA5,<br>OFD1, MYO7A, USH1C, DFNB31, CDH23, PCDH15, USH1G,<br>GPR98, BBS1-BBS10, TRIM32, BBS12, BBS13, AHI1 | adRP, arRP, xIRP, arLCA, JS, BBS,<br>USH, xICORD, xICSNB, MKS,<br>LGMD2H, MKKS |  |  |
| Photoreceptor<br>structure | RDS, ROM1, FSC2                                                                                                                                           | adRP, digenic RP, adMD                                                         |  |  |
| mRNA splicing              | HPRP3, PRPF8, PRPF31, PAP1, TOPORS                                                                                                                        | adRP                                                                           |  |  |
| Others                     | ASCC3L1, SPATA7, EYS, KLHL7, RD3, KCNV2, RIMS1, CACNA2D4, ADAM9, CNNM4, TRPM1, CABP4, OFD1                                                                | adRP, arRP, arCOD, arLCA, adCORD, CORD, arCORD, JS                             |  |  |







#### **Innovation: Gene Therapy**

- Infants with Leber Congenital Amaurosis (20 years ago): "we can provide supportive care"
- First FDA-approved gene therapy for an inherited disease → precision medicine (LCA – RPE65)
  - RPE65 gene cloning & knockout mouse (1993-1998, T. Michael Redmond, NEI)
- First in-human CRISPR gene editing (CEP290-driven LCA)
- Accessibility of eye for exam, outcome measures, surgery



Video courtesy of Jean Bennett, MD, PhD (University of Pennsylvania) Russell S, Bennet J, Wellman JA, et al. *Lancet* 2017;390:849-60.



#### **Gene Therapy Era**

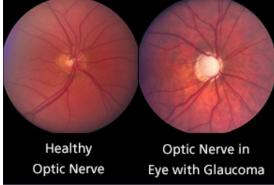
|                                                | FDA NEWS                                                  | RELEASE                                                                                                                    |                             |
|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| FDA appro<br>patients with                     |                                                           | gene therap                                                                                                                |                             |
|                                                | <b>f</b> Share <b>y</b> Tweet <b>in</b> Linke             | din 🔁 Email 🖨 Print                                                                                                        |                             |
| For Immediate Release:                         | December 18, 2017                                         |                                                                                                                            |                             |
|                                                |                                                           |                                                                                                                            | Español                     |
| neparvovec-rzyl), a r<br>inherited form of vis | new gene therapy, to treat<br>ion loss that may result ir | v approved Luxturna (voret<br>children and adult patients<br>i blindness. Luxturna is the<br>S. that targets a disease cau | s with an<br>first directly |

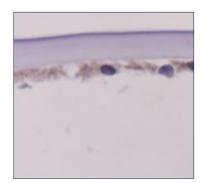
- ABCA4 Stargardt disease
- CHM X-linked choroideremia
- CNGA3 Achromatopsia
- CNGB3 Achromatopsia
- GUCY2D Leber congenital amaurosis

- MERTK Retinitis pigmentosa
- MYO7A Usher syndrome
- PDE6B Retinitis pigmentosa
- RLBP1 Retinitis pigmentosa
- RPGR X-Linked RP
- RPGRIP1 Leber congenital amaurosis

2021 RPE65 added to the ACMG 3.0 secondary findings genes

- RS1 X-linked retinoschisis
- USH2A Usher syndrome (Dual vector, ASO)
- CEP290 Leber congenital amaurosis (ASO, CRISPR)

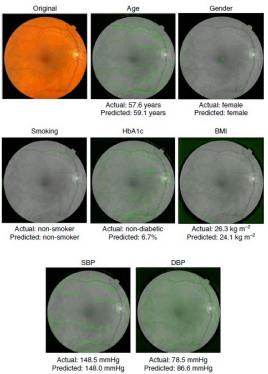




#### **Innovation: Complex/Common Disorders**

- Age-related macular degeneration (AMD)
  - Degeneration of the retina that occurs during aging ("wet" or "dry"): loss of retinal pigment epithelium (RPE) & subsequently photoreceptors
  - 2005: GWAS → link between Complement Factor H (CFH) and AMD (accounts for 40-50% of disease risk)
  - AMD consortia & subsequent studies (some co-funded by NHGRI): numerous additional loci, many tied to complement
- Glaucoma: progressive degeneration of optic nerve
  - NEIGHBORHOOD Consortium: international consortium co-funded by NEI, NHGRI, and others → found >133 loci linked to high IOP risk and glaucoma (European, Asian, African ancestries)
- Fuchs' corneal dystrophy: leading cause of corneal transplant
  - GWAS: 4 loci (78% of disease risk)










#### **Innovation: Artificial Intelligence for Medicine**

- First FDA-cleared autonomous AI system in any medical field (Abramoff et al, NPJ Digit Med 2018)
- Knowledge discovery regarding systemic health (Poplin et al, Nat Biomed Eng 2018)
- Prediction of AMD progression (Yim et al, Nat Med 2020)

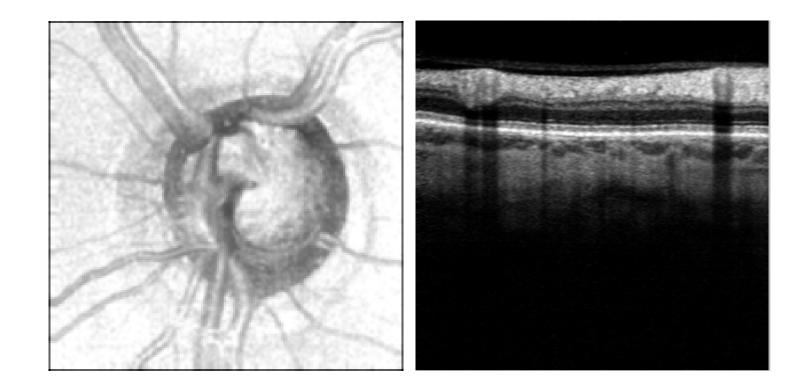
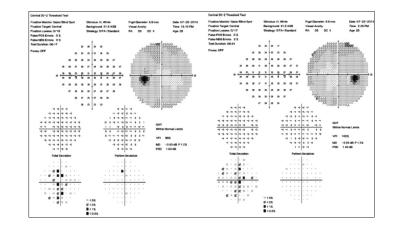






#### Eye as a Model System: Imaging

- Retinal photography (e.g. ETDRS: standardized diabetic retinopathy reading centers, in use since 1968)
- OCT: revolution in research & clinical care, qualitative to quantitative
- High-speed Fourier-domain OCT → to 3D volumetric imaging
- OCT Angiography: noninvasively detect flow & motion, capillary-level resolution, potential to generalize across other fields (structure & function)

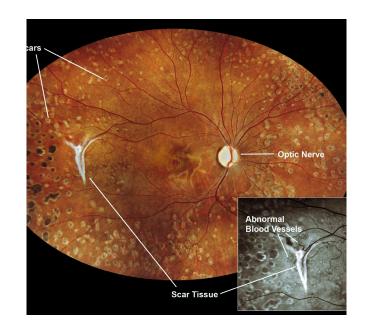
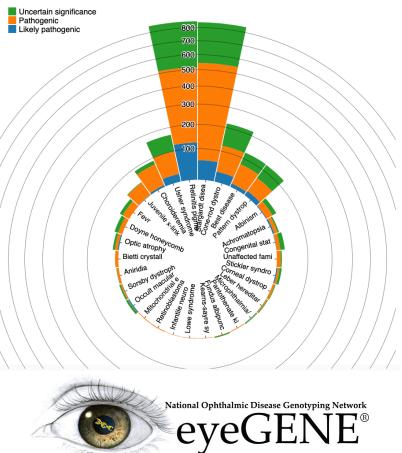




Image and video courtesy of David Huang, MD, PhD, and Yali Jia, PhD (OHSU Casey Eye Institute) Windsor MD et al. *Am J Ophthalmol* 2018; 185:115-22 Hormel TT, et al. *Prof Retin Eye Res* 2021 Mar 22:10965

## Eye as a Model System: Functional Data & Accessibility

- Functional outcome measures (quantitative, validated):
  - Visual acuity
  - Perimetry & microperimetry (retinal function & vision loss in periphery), contrast & color sensitivity
  - Maze tests
- Accessibility for study
  - Retina as part of the brain: neurodegerative diseases like Alzheimer's can be detected in the eye
  - Vasculature in choroid & retina: changes in vasculature from diseases like diabetes can be measured
  - Immunology in the eye: noninfectious uveitis (form of immunity)
  - Cell-based and gene-based therapies: complex tissues are accessible & trackable







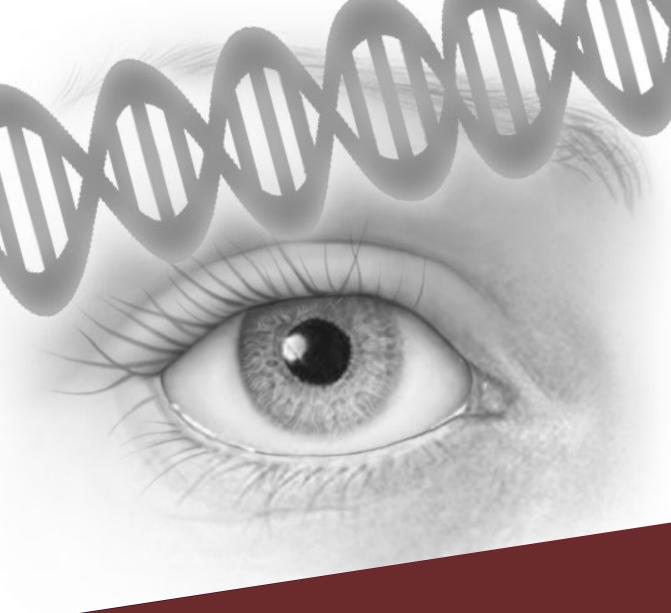

#### eyeGENE®: NEI Genetic repositories

- National network of ophthalmic CLIA-certified laboratories, private and academic clinical organizations and their patients, and the vision research community
  - Centralized **diagnostic genotyping** for patients & research
  - **Research repository**: DNA/tissue coupled to anonymous phenotypic information for discovery research
  - **Database resource**: phenotype information (clinical data, images, lab data) for disease research and future opportunity for trials participation
  - Increase public & professional **awareness**: value of diagnostic genetics for ophthalmic medical care








Rob Hufnagel, M.D., Ph.D.

Kerry Goetz



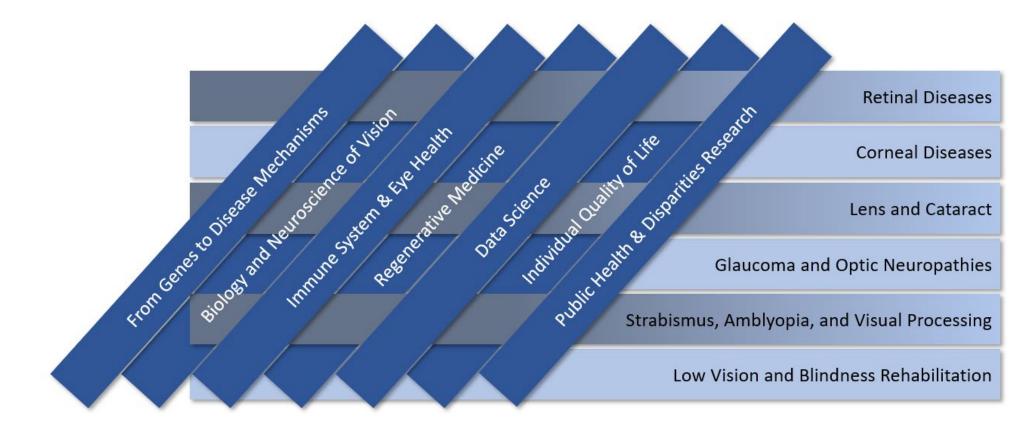
National Eve Institu

Where We're **Heading:** Strategic Plan, Potential Collaborations with NHGRI





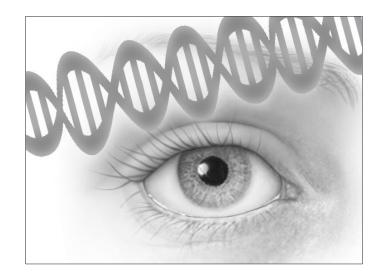
#### **Revised NEI Mission Statement: First Since** 1968

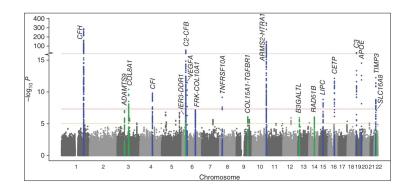

The mission of the National Eye Institute is to eliminate vision loss and improve quality of life through vision research. To achieve this mission, NEI provides leadership to:

- Drive innovative research to understand the eye and visual system, prevent and treat vision diseases, and expand opportunities for people who are blind or require vision rehabilitation
- Foster collaboration in vision research and clinical care to develop new ideas and share knowledge across other fields
- Recruit, inspire, and train a talented and diverse new generation of individuals to expand and strengthen the vision workforce
- Educate health care providers, scientists, policymakers, and the public about advances in vision research and their impact on health and quality of life.



#### **NEI Strategic Plan (Coming Nov 2021)**


#### **7 Cross-Cutting Areas of Emphasis**

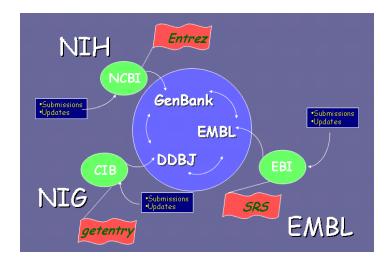





#### Mendelian vs. Complex Genetic Diseases

- Thousands of known genetic mutations causing eye disease
- Mendelian Eye Diseases: single mutation, typically rare
  - Underlying disease biology  $\rightarrow$  therapeutics
- Common Eye Diseases: typically complex, often interaction of multiple genes & environmental factors
- Innovation: Genome-Wide Association Studies → risk factors
   & risk alleles for common eye diseases
  - AMD: Complement Factor H variant → increased risk 7.4x, role of immune system in AMD pathogenesis
  - AMD consortia: 34 loci with 52 independent variants
  - Yet little success from clinical trials to block complement pathway → must understand biological mechanisms to develop therapies





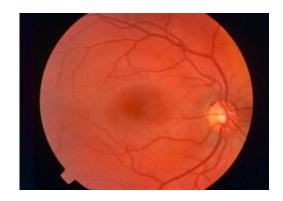


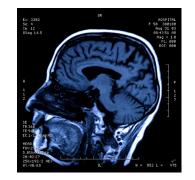

#### **Opportunity: Large-Scale Curated Databases**

- Understanding complex systems interactions: need research networks & databases
  - Publicly-available genomic, transcriptomic, epigenetic databases → under-representation of ocular tissue data
- Need: curate databases to publicly share data & establish standard data representations
  - Multi-omics analysis: identify new pathogenic mutations in disease genes, help understand mechanisms
  - Combine results from multiple smaller studies
- Need: bioinformatics & machine learning algorithms to aid genetic discovery & analysis
  - Examples: analysis of WES, epigenetics, gene transcription network identification (ChIP-seq), metabolomics, proteomics









#### **Challenge: Privacy and De-Identification**

Large research infrastructure based on data sharing

#### • Are retinal images biometrics?

- HIPAA PHI: "biometric identifiers (e.g., retinal scans, fingerprints)..."
- In practice: considered de-identified (e.g., journal publications), but evolving (e.g., GDPR)
- What about radiological images? Genetic sequence data...?
- Benefits of "objective" data (e.g. images, genetics): anchor subjective data (e.g. EHRs, racial/gender bias, social determinants of health)
- Need: domain consensus about privacy risks vs. research/societal benefits
  - Ocular image WG (Chairs: Emily Chew [NEI], Joel Schuman [NYU]
  - Role of collaboration with genomics community?





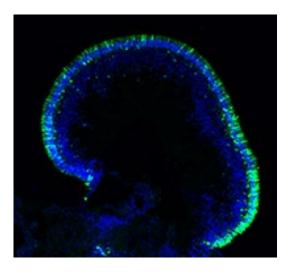


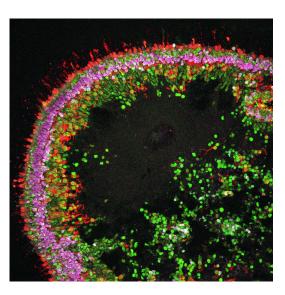
#### **Datasets & Software Libraries: Why Share?**

- Advancement of science through data/code re-use, reanalysis, development of new methodologies
  - Improved data quality through iterative review by others
  - Facilitate community **standards for data representation**
- Strengthen field → best scientists will be drawn to best datasets for analysis
- NIH Data Sharing Policy (Jan 2023): need explicit plan
- Other incentives for data sharing ("carrot")
  - New publication type: academic credit, citations, findable
  - How to effect gradual culture shift in community? Promotion & tenure? Other ways to promote value to data sharing & harmonization?









https://grants.nih.gov/grants/policy/data\_sharing/ Zarbin MA et al. Trans Vis Sci Technol 2021, Vol. 10, 20.doi: <a href="https://doi.org/10.1167/tvst.10.8.20">https://doi.org/10.1167/tvst.10.8.20</a>

National Eye Institut

### **Opportunity: Model System Development**

- Well-defined animal & cell-based model systems: essential for basic and translational research
- Animal models: often do not represent unique attributes of primate retina and visual cortex
  - Need to address gaps in animal models (e.g. fovea: cones)
  - Need methods for temporal & spatial control of gene expression to study connections between genes & disease mechanisms (e.g. optogenetics)
- Human cell-based models (e.g., iPSCs, 3D organoids): often lack systems-level complexity of animal models
  - Need standards & best practices for developing cellbased models







#### **Topics for Discussion**

- Importance of genetics, genomics, data science for NEI strategic plan
- Potential areas for collaboration...
  - Development of gene-based (as opposed to purely morphological) nomenclature for ophthalmic genetic diseases
  - Infrastructure & guidelines for public data sharing
  - Development of standard data representations for data sharing
  - Incentives for data sharing (e.g. publications, promotion & tenure, team science)
  - Data privacy: guidelines & best practices
  - Others?

