Analysis Tools

29OCT2021

Vincent Carey and Anne O'Donnell Luria

Overview

Core components

- o Batch computing: Terra, Dockstore
- Interactive computing: Jupyter Notebooks, RStudio/Bioconductor, Galaxy

Basic Science

T2T Workflows and Analysis

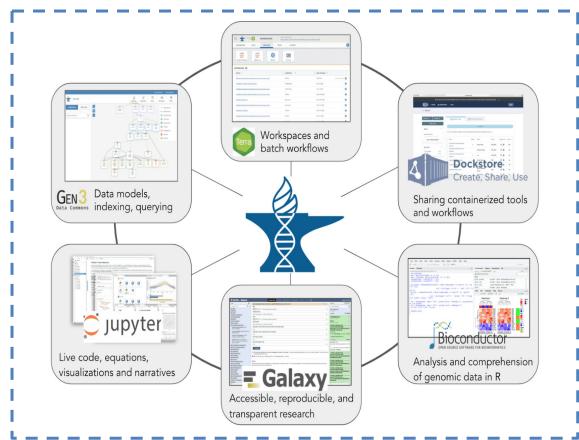
Clinical Science

- Polygenic risk scores (PRS)
- o seqr
- AHA Assessment
- PharmCAT

Extending AnVIL

- Available technologies
- Future directions

1	12:35-1:50	Session 1: Breakout rooms		
	Data submission	on and consortia engagement	Analysis tools	
	Moderators: Dr. A	Adam Resnick (Children's Hospital of	Moderators: Dr. I	Marylyn Ritchie (University of
	Philadelphia) and	Ms. Valentina Di Francesco (NHGRI)	Pennsylvania) and	d Dr. Ken L. Wiley, Jr. (NHGRI)
	12:35-12:40	Moderator introductions	12:35-12:40	Moderator introductions
	12:40-12:55	AnVIL presentation:	12:40-12:55	AnVIL presentation:
		Dr. Brian O'Connor (Broad) and		Dr. Vincent Carey (HMS)
		Dr. Frederick Tan (Carnegie)		and Dr. Ira Hall (Yale)
	12:55-1:40	Discussion	12:55-1:40	Discussion
	1:40-1:50	Prepare breakout report	1:40-1:50	Prepare breakout report


Breakout room: Analysis tools

Dr. James Knight

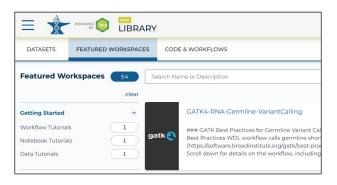
Moderators: Dr. Marylyn Ritchie and Dr. Ken Wiley, Jr.

Dr. Nadav Ahituv	Dr. Anshul Kundaje
Dr. Joshua (Josh) Akey	Dr. Karen Miga
Dr. Mark Craven	Dr. Adam Phillippy
Dr. Sean Davis	Dr. Timothy (Tim) Reddy
Dr. Barbara Engelhardt	Dr. Chunhua Weng

Building a Secure Federated Data Ecosystem

FedRAMP certified 1 ATO

Core Components Overview


Thousands of tools provided by:

Featured workspaces showcase reproducible, ready to run workflows and notebooks

Metrics: Tools & Workflows

<u>Dockstore:</u> WDL: 840 workflows

Galaxy: 28 workflows

<u>Terra</u>: 272 public workspaces

48 featured workspaces

<u>Bioconductor</u>: 2,041 software packages

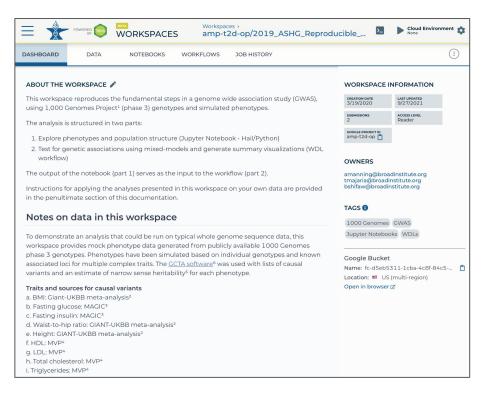
977 annotation resources

406 data collections

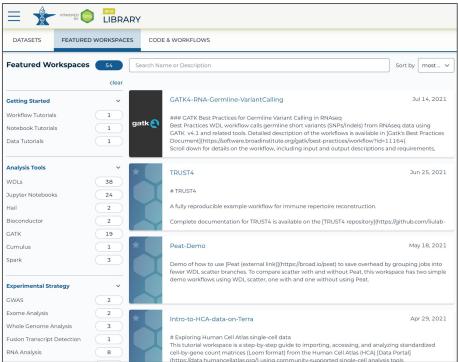
Galaxy: 7,829 tools available

AnVIL toolsets by scale and purpose

Interactive

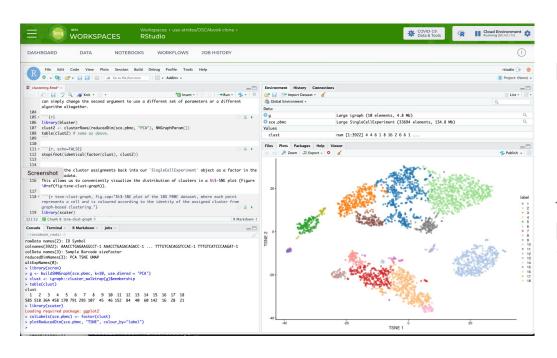

Large Scale / Batch

Basic Science


Clinical

The Workspace - The fundamental unit in Terra

Workspace: the fundamental unit in Terra


Featured workspaces: see how science gets done

Collaboratively access and organize data, launch tools and run analyses

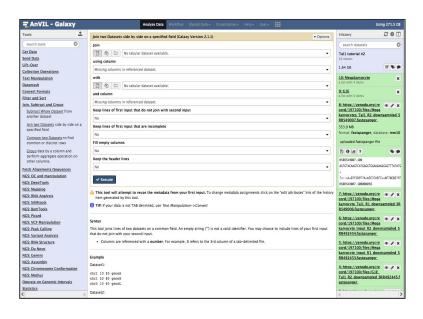
Public showcase workspaces for users to discover ready-to-run analyses

Terra: RStudio + Bioconductor

RStudio: analysis environment preferred by the R community.

 Machine learning, statistical computing, and visualizations

Bioconductor: tools and modules for the analysis and comprehension of high-throughput genomic data, implemented in R


1,903 software packages available

AnVIL provides a robust well tested RStudio environment with the latest Bioconductor release integrated

Galaxy: Cloud-scale & flexible analysis

- Accessible, reproducible, integrative science with thousands of tools
- Large, active community of users and contributors
- World-wide training network with materials, educating thousands every year
- Avoid data downloads
- Use Galaxy without quotas

Web-based analysis environment for running analysis tools and building workflows for users with no programming expertise

Telomere-to-Telomere (T2T) Analysis Workflows

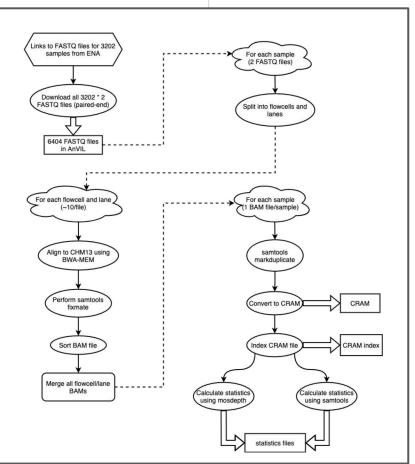
∃ R

README.md

WDLs for T2T Variants

This directory contains the WDL files used for large-scale short-read

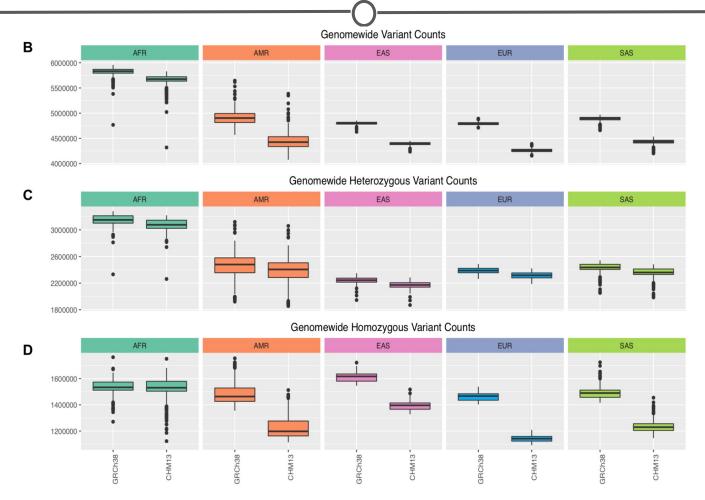
Data ingestion


 wdls/download_aspera.wdl: Downloads FASTQ files from the Archive (ENA), given accession numbers

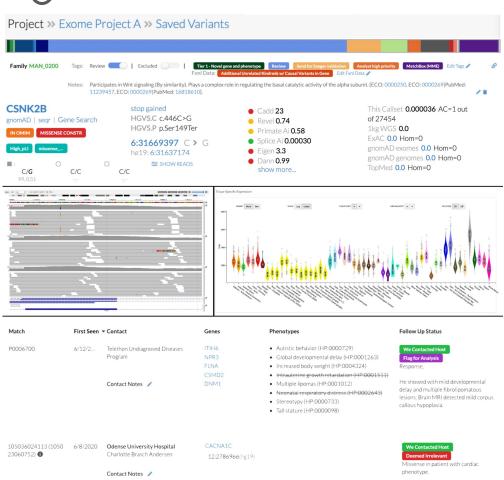
Read alignment

 wdls/t2t_alignment.wdl: Given a reference FASTA file, samp FASTQ files, BWA index, and dedup distance (default = 100), per described in Aganezov, Yan, Soto, Kirsche, Zarate, et al. (2021)

Variant calling


 wdls/haplotype_calling_chrom.wdl: Given a reference FAST index and dict) a sample CRAM (plus corresponding index) the

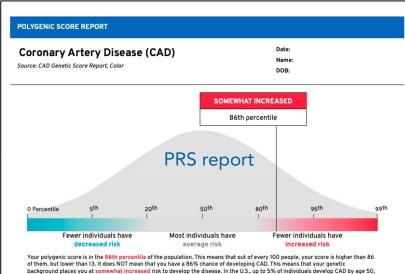
github.com/schatzlab/t2t-variants



Re-analyzing diversity in 3,202 samples

Clinical Genomics: seqr - Mendelian Inheritance

- Open source software on AnVIL for collaborative exome and genome analysis
- Accepts joint called vcf input file
- Supports collection of extensive metadata
- Matchmaker Exchange node
- Ongoing development ideas
 - CNV (exome) and SV (genome) data loading and SNV-SV compound het searching
 - Improving representation of mito and STR variants
 - Integration of RNA-seq data for analysis
 - Support ACMG variant classification
 - Expansion of Matchmaker Exchange capacity
 - Increased support for cram to variant files to loading in seqr



Pais et al., medRxiv, 2021

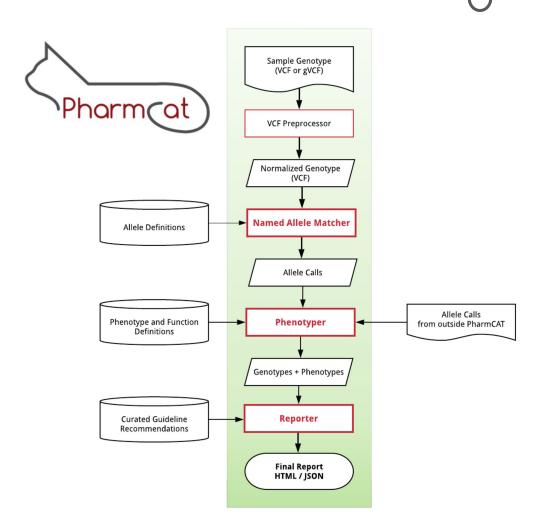
Contact Host

Clinical Genomics: Jupyter Notebook for PRS

```
In [19]: #Determine the extent to which known risk factors are enriched in those with CAD
                           tabone=CreateTableOne(c('age','male','dm','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','currentsmok','htn'),data=dat,strata=c('cad'),factorVars=c('male','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','currentsmok','curre
                           ok', 'htn', 'dm'))
                           print(tabone, quote = F, digits=1)
                           #We see that individuals with CAD tend to be older, male, and more likely to smoke or have been diagnosed with diabete
                           s or hypertension
                                                                                    Stratified by cad
                                                                                                                                                                                       test
                                                                                       12446
                                                                                                                                   644
                                age (mean (SD))
                                                                                       48.28 (14.95) 63.12 (8.15) < 0.001
                                male = 1 (%)
                                                                                          5081 (40.8)
                                                                                                                                  417 (64.8)
                                                                                                                                                                  <0.001
                                dm = 1 (%)
                                                                                            401 (3.2)
                                                                                                                                  190 (29.5)
                                                                                                                                                                  <0.001
                                currentsmok = 1 (%)
                                                                                           283 ( 2.3)
                                                                                                                                     31 (4.8)
                                                                                                                                                                  <0.001
                                htn = 1 (%)
                                                                                          2712 (21.8)
                                                                                                                                  595 (92.4) < 0.001
 In [20]: # For the genetic data, we compute genetic ancestry using principal components
                           addmargins(table(dat$race))
                           round(prop.table(table(dat$race))*100,1)
                            # Our population is 80% white, 6% Black, and 4% Asian
                                Asian
                                                      Black
                                                                            Other Unknown
                                                                                                                        White
                                                                                                                                                   Sum
                                      482
                                                            784
                                                                                  493
                                                                                                        833
                                                                                                                        10498
                                                                                                                                             13090
                                Asian
                                                      Black
                                                                            Other Unknown
                                                                                                                        White
                                      3.7
                                                            6.0
                                                                                                                          80.2
In [21]: # We can plot genetic ancestry of individuals
                   q <- ggplot(dat,aes(x=PC1,y=PC2,color=race,fill=race)) + geom_point(size=1)+theme_bw()</pre>
                       = q+xlab('Principal Component 1')+ylab('Principal Component 2')+gqtitle('Principal Components by Race')
                           Principal Components by Race
```


and up to 25% develop CAD by age 80.

AHA/AnVIL Working Group


ant metadata
n risk
effect sizes
ng, evaluating 6) analyses.
kage
regression on
g Improve Genome-Wide
es polygenic ta sets
rsis
imation
on Reference
ession onable score.
he Clinical
er and Breast
oronary Artery
ccurate jenome-wide
genic Risk
9 E

- Clinical genomics.
- Interviewed a panel of clinical scientists.
- Recommended the prioritization of polygenic risk score (PRS) calculation and pharmacogenetics as our initial focus areas.
- Focus groups of PRS calculation experts led to the identification of the 17 tools listed here.
- Conducted focus groups to discuss resources for pharmacogenetics (Casey Overby Taylor, JHU)

Clinical Genomics: PharmCAT (Coming Soon!)

What does PharmCAT do?

- PharmCAT is used to support clinical decision making
- Utilizes CPIC/PharmGKB guidelines for gene-drug pairs
- Gives prescription recommendations based on genetic variants

How does PharmCAT do what it does?

- VCF file is provided by the user
- Named Allele Matcher matches variant information with Allele definitions and gives a diplotype call for each gene
- The Reporter takes output from the Named Allele Matcher and gives prescription recommendations

Extending AnVIL

- Bring your own tools and workflows
 - Either by registering them in Dockstore, or by uploading your own custom WDL to Terra
- Build on top of the AnVIL APIs
 - All of the components of the AnVIL provide APIs
 - We will be providing a unified, stable API endpoint for the AnVIL with OpenAPI documentation
 - We are building API wrapper libraries in Python and R, largely generate from the OpenAPI specification but curated
 - See the repo: https://github.com/anvilproject
- Adding new web applications
 - We are defining standards to allow a containerized web application to be hosted inside AnVIL
 - Leveraging standards container orchestration (Kubernetes) for complex applications

Future directions

Integration of third-party applications

- o Goal: empower app developers with streamlined integration and verification process
- o In process: create official Terra App Dev and Terra App Security guides for third-party developers

Machine learning

- Harmonized datasets for training and testing models
- Optimized software libraries with GPU support for efficient processing
- Advanced visualization capabilities to inspect and debug
- Model Zoo Make code and pretrained models available to the genomics community

Basic Sciences

- More diverse assays, e.g. ENCODE, Roadmap Epigenomics, IGVF, dGTEx
- Large scale multi-omic integrations

Clinical genomics

- Diversity of data types, e.g. eMERGE (genomics, medical records, image analysis, etc)
- Disease associations, clinical reporting, treatment guidelines