Using Pharmacogenomics in Practice: A Step-by-Step Guide

Robert J. Ostrander, M.D., FAAFP
WNY Valley View Family Practice
Associate Professor, Dept. of Family Medicine
SUNY Upstate Medical University, Syracuse, NY
Activity Disclaimer

The material presented here is being made available by the American Academy of Family Physicians for educational purposes only. Please note that medical information is constantly changing; the information contained in this activity was accurate at the time of publication. This material is not intended to represent the only, nor necessarily best, methods or procedures appropriate for the medical situations discussed. Rather, it is intended to present an approach, view, statement, or opinion of the faculty, which may be helpful to others who face similar situations.

The AAFP disclaims any and all liability for injury or other damages resulting to any individual using this material and for all claims that might arise out of the use of the techniques demonstrated therein by such individuals, whether these claims shall be asserted by a physician or any other person. Physicians may care to check specific details such as drug doses and contraindications, etc., in standard sources prior to clinical application. This material might contain recommendations/guidelines developed by other organizations. Please note that although these guidelines might be included, this does not necessarily imply the endorsement by the AAFP.
Disclosure Statement

It is the policy of the AAFP that all individuals in a position to control CME content disclose any relationships with ineligible companies upon nomination/invitation of participation. Disclosure documents are reviewed for potential relevant financial relationships. If relevant financial relationships are identified, mitigation strategies are agreed to prior to confirmation of participation. Only those participants who had no relevant financial relationships or who agreed to an identified mitigation process prior to their participation were involved in this CME activity.

All individuals in a position to control content for this activity have indicated they have no relevant financial relationships to disclose.
Learning Objectives

1. Identify instances when the use of pharmacogenomic information should be considered to improve prescribing and patient outcomes

2. Using online evidence-based guidelines like CPIC and PharmGKB, discuss if actionable variants exist for medications, determine which tests should be ordered, and interpret the results.

3. Explain the rationale for pharmacogenetic testing to improve the likelihood and streamline the process of prior authorization.
MY Goal for Everyone

That you will be able to return to your practice next week and be able to order Pharmacogenetic (PGx) testing on a commonly prescribed drug.

With only 30 minutes available, the presentation will be focused more on practical instruction than concepts.

I will present our case, go over a few key principles and then walk through the case.
The Case

Your patient is a 52-year-old man who never comes in for routine care. He had a health screening at work and was told his cholesterol was very high. He reluctantly makes an appointment to discuss it. PMH negative except for appendectomy at age 12. He hasn’t seen a doctor “in years.” Medications: None. OTC/Supplements: None. FH: Father had an MI at age 45 and is living after CABG in his late 40s and 2 subsequent stents. Does not have a lot of contact with him. He thinks his paternal aunt may also have had some sort of “heart problem.”
The Case

SH: Married. Works as a landscaper. 1 PPD smoker. 3-4 beers on Friday and Saturday night. Lives with wife and teenage son and daughter.

ROS: Gets a little winded raking and shoveling and walking up long inclines. Otherwise, negative.

The Case

Fasting labs ordered. Fasting CBC w/ diff. Lipid profile. CMP.

Significant for:

Glucose 112

Lipids
Total Cholesterol 303
TG 218
HDL 45
calc LDL 214

ALT 60 (ULN 35)
He returns to discuss his labs. He leads off by saying he does not want to be on one of those cholesterol medications. A couple guys at work were put on them by their doctor (One of them is your patient.), and they felt terrible. He has heard they make you achy, and he is already sore enough. And he doesn’t want to give up his morning grapefruit juice. His 17-year-old daughter went on the internet after his health screen at work and told him he needed to get genetic testing. She helped him get 23AndMe testing, which he brings along. SLCO1B1 with decreased or poor function. What are your next steps?
Principles and Concepts

PGx at this point mostly involves drug metabolism (pharmacokinetics) and not disease-drug matching (pharmacodynamics-receptor affinity and other factors).

Drug-drug interactions also affect drug metabolism (sometimes referred to as phenoconversion) and this needs to be taken into account when applying PGx information.
Principles and Concepts

When applying genetic effects on drug metabolism it is important to distinguish metabolism of active drug to inactive metabolite from metabolism of inactive pro-drug to active metabolite.

Examples: statin ➔ inactive form. Poor metabolizers have elevated serum concentrations with more myopathy, and rapid metabolizers have decreased drug level and clinical effect.

Codeine/Tramadol ➔ active form. Poor metabolizers have reduced effectiveness, and rapid metabolizers have a risk of overdose and side effects.
Principles and Concepts

Table 1

Association of enzyme metabolic rates to genotypes

<table>
<thead>
<tr>
<th>Classical metabolism status</th>
<th>Activity score(^1)</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor metabolizer (PM)</td>
<td>0.0</td>
<td>Homozygous null gene</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>Heterozygous null and reduced metabolism</td>
</tr>
<tr>
<td>Intermediate metabolizer (IM)</td>
<td>1.0</td>
<td>Homozygous reduced metabolism</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>Heterozygous null and wildtype</td>
</tr>
<tr>
<td>Extensive metabolizer (EM)</td>
<td>2.0</td>
<td>Homozygous wildtype</td>
</tr>
<tr>
<td></td>
<td>> 2.0</td>
<td>Heterozygous null and ultra metabolism</td>
</tr>
<tr>
<td>Ultra-rapid metabolizer (UM)</td>
<td></td>
<td>Heterozygous reduced and ultra metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homozygous wildtype and ultra metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homozygous ultra metabolism</td>
</tr>
</tbody>
</table>

\(^1\) For each allele, a score of 0 is given for null genes, 0.5 for intermediate, and 1.0 for extensive metabolizers. Alleles carrying gene duplications receive double the value compared to the assigned activity score with a single gene copy. The sum of both alleles is given.
Principles and Concepts

Although there are guidelines about how to apply PGx information, there are few guidelines about when to order it.

- Limitations in the design of published pharmacogenetic studies (in particular, the lack of prospective randomized trials demonstrating improved clinical outcomes when drug therapy or specific dose is selected on the basis of genotype)
- Regulatory and ethical concerns
- Lack of cost effectiveness analyses
- Limitations in the number of available pharmacogenetic tests and lack of guidelines for test implementation
- A lack of education on the benefits of pharmacogenetic testing, both for patients and providers
- Potential for delay in therapy while awaiting results of genotyping

The problem is lack of data, not data that shows no benefit.
Principles and Concepts

- Common Classes of medications encountered in Family Practice with PGx Guidelines:

 SSRIs, Statins, NSAIDs, Codeine/Tramadol, Clopidogrel, Warfarin, TCAs, atomoxetine
Family Practice is the specialty of expert personalized care, especially of common conditions and undifferentiated problems. It is not the specialty of the simple and straightforward. Most of our patients expect the former. Much of the healthcare system and society, including many of our subspecialty colleagues, assume the latter. “Evidence Based” in its narrow sense is the starting point for personalized care. When guidelines and protocols have not yet been developed or do not apply to specific patients, failure to act, waiting for others to lead the way, is not appropriate. We are obligated to use our training—from basic science through learning throughout our careers, our reasoning, and our judgment to provide that expert personalized care.
Our Case
Our Case

CPIC guidelines are designed to help clinicians understand HOW available genetic test results should be used to optimize drug therapy, rather than WHETHER tests should be ordered. A key assumption underlying the CPIC guidelines is that clinical high-throughput and pre-emptive (pre-prescription) genotyping will become more widespread, and that clinicians will be faced with having patients’ genotypes available even if they have not explicitly ordered a test with a specific drug in mind. CPIC’s guidelines, processes and projects have been endorsed by several professional societies - read more.

Each CPIC guideline adheres to a standard format, and includes a standard system for grading levels of evidence linking genotypes to phenotypes, how to assign phenotypes to clinical genotypes, prescribing recommendations based on genotypes/phenotypes, and a standard system for assigning strengths to each prescribing recommendation. The SOP for guideline creation has been published in Current Drug Metabolism: Incorporation of Pharmacogenomics into Routine Clinical Practice: The Pharmacogenomics Implementation Consortium (CPIC) Guideline Development Process. The CPIC authorship guidelines contain more details on minimizing and managing conflicts of interest.

Showing 1 to 1 of 1 entries (filtered from 26 total entries)
CPIC® guideline for statins and SLCO1B1, ABCG2, and CYP2C9

Most recent guideline publication:

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for SLCO1B1, ABCG2, and CYP2C9 and statin-associated musculoskeletal symptoms (January 2022)

Updates since publication:

none

Tables provided in the main manuscript of the guideline:

- Table 1. Assignment of predicted SLCO1B1, ABCG2, and CYP2C9 likely phenotype based on genotype
- Table 2. Dosing recommendations for statins based on SLCO1B1 phenotype in adults
- Table 3. Dosing recommendations for rosuvastatin based on ABCG2 phenotype in Adults
Our Case

<table>
<thead>
<tr>
<th>Renovastatin</th>
<th>SLOOB1 Decreased Function</th>
<th>SLOOB1 Possible Decreased Function</th>
<th>SLOOB1 Poor Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increased renovastatin exposure as compared to normal function; Typical myopathy risk with doses ≤20 mg.</td>
<td>Prescribe >320mg on a starting dose and adjust doses of renovastatin based on disease-specific and specific population guidelines if dose >20mg needed for desired efficacy</td>
<td>Prescribe desired starting dose and adjust doses of renovastatin based on disease-specific and specific population guidelines. Prescriber should be aware of possible increased risk for myopathy especially for doses >40mg.</td>
</tr>
<tr>
<td></td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
</tbody>
</table>

The potential for drug-drug interactions and dose limits based on renal and hepatic function and Asian ancestry should be evaluated prior to initiating a statin. The effects of drug-drug interactions may be more pronounced resulting in a higher risk of myopathy.
Our Case
Our Case
Our Case
A/P: Familial hypercholesterolemia. Genetic testing confirmation not necessary based on meeting criteria. Counseled on significance, lifestyle and advised to share information with family members. Guidelines recommend high dose statin to target, >60% reduction in LDL, atorvastatin 80mg per day or rosuvastatin 40 mg/day.

DTC test with potentially poor metabolizer variant in SLCO1B1, increasing risk of statin myopathy. FDA requires commercial lab confirmation to verify before using it to make treatment decisions. CPIC guidelines provide dosing recommendations for statin therapy based on the results of PGx testing. Confirmatory testing ordered.
After a polite discussion with the insurer’s prior authorization physician, you obtain authorization for the genetic testing.

Results show SLCO1B1 *1/*5 which the report notes correlates with decreased function.

You consult the CPIC guideline:
Our case
In addition to counseling on diet and exercise, along with smoking cessation, you prescribe rosuvastatin 20mg daily. You begin antihypertensive treatment, assuring that there are no drug-drug interactions that might affect rosuvastatin metabolism. Follow up lipids are ordered for 3 months, with an individualized goal LDL reduction of <100, preferably <70.

If goal is not reached, you plan to consider adding ezetimibe.
Summary

1 There are significant pharmacogenetic variants in medications commonly used in Family Practice.

2 Being prepared to use pharmacogenetics in clinical practice will require an initial investment in time.

3 Once the groundwork is laid, clinical application of pharmacogenetics in day-to-day practice is feasible.
Resources

The NIH Inter-Society Coordinating Committee for Practitioner Education in Genomics (ISCC-PEG), on which I serve as the AAFP Liaison has a pharmacogenetics project group. Over the past 2 years we have produced several interactive modules in pharmacogenetics. At the time I am writing this, they are in the final stages of approval and CME sponsorship through the University of Pittsburgh. The links will be posted on:

https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources#pharmacogenomics

<table>
<thead>
<tr>
<th>Pharmacogenomics Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmcogenomics Nomenclature</td>
</tr>
<tr>
<td>Genotype-Guided Clopidogrel Treatment</td>
</tr>
<tr>
<td>Psychiatric PGx</td>
</tr>
<tr>
<td>Genetic Testing</td>
</tr>
<tr>
<td>Direct to Consumer Genetic Testing</td>
</tr>
<tr>
<td>Practical aspects of Pharmacogenomics Implementation</td>
</tr>
<tr>
<td>Navigating PGx Test Coverage in Medicare Populations</td>
</tr>
<tr>
<td>Economics of Pharmacogenomic Testing</td>
</tr>
</tbody>
</table>
Resources

- https://www.genome.gov/health/For-Health-Professionals
- https://www.genome.gov/For-Health-Professionals/Provider-Genomics-Education-Resources
References

- https://cpicpgx.org/
- https://www.pharmgkb.org/
- https://www.23andme.com/test-info/pharmacogenetics/
- https://www.uptodate.com/contents/familial-hypercholesterolemia-in-adults-overview?search=familial%20hypercholesterolemia&source=search_result&selectedTitle=1~111&usage_type=default&display_rank=1
https://doi.org/10.1038/gim.2015.190
Practice Recommendations

1. Read the CPIC guidelines in detail for three classes of medications that have known actionable gene-drug interactions.
2. For these classes, develop a cognitive framework of when you will consider pharmacogenetic testing (realizing that there are few standards or guidelines at this time for when to order testing.)
3. Investigate whether your usual clinical lab has contracted to make these tests available and review the process. If not, become familiar with one of the labs on www.ncbi.nih.gov/gtr/tests
4. Create a template for your progress notes that will satisfy prior authorization requirements, including documenting the need for the medication, the known potential gene-drug interaction and naming a specific guideline, e.g. CPIC.