Genomic Screening and the Reverend Bayes

Les Biesecker

Center for Precision Health Research

NHGRI

November 8, 2023

Genomics is Not Exceptional

- Genomic testing, with few exceptions, performs like every other medical test
- It has sensitivity, specificity, PPV, & NPV
- Like any other test, the PPV depends on the testing scenario

Genetics Practice is Exceptional

- We generally use genomic testing in scenarios where prior probability of disease is high
 - Ironically, in this setting, the testing little changes diagnosis & management
- When testing in low prior probability settings, the game is different

Math...

- P(A)
- The probability of A
- P(A|B)
- The probability that A is true *if* B is true

How To Think Clearly About Screening

- Analytic validity is a probability
- Clinical validity is a probability
 - Pathogenicity
- Clinico-molecular diagnosis is a probability
- Penetrance is a probability
- Expressivity is a probability
- We need a formal, probabilistic model of genetic diagnosis

P R O B A B I L I T Y PRETTY SURE THIS IS GONNA HAPPEN

A Few Concepts & Definitions

- All genetic disease is an increased susceptibility to abnormal phenotype
 - Having the disease but no manifestations is non-penetrance
 - Not having the disease ≠ non-penetrance
- Nearly all variants have a *probability* of pathogenicity
 - They are not certain to be causative
 - A few have probability of pathogenicity 100%
 - For these, harboring the variant \equiv has the disease \neq has the phenotype

Steps

- Assess probability of pathogenicity of the variant
 - P(Path|Evid)
 - Predictors plus historical data on variant
- Clinical interpretation of person with variant
 - P(Disorder | Phen)
 - Clinico-molecular diagnosis
 - Harboring a variant ≠ having disorder
- For those with disorder but without phenotype
 - P(Phen | Disorder)

Graphical Math – Marfan Syndrome

Genome Medicine 2019 11(1):75

Example Scenario

37 yo man trio exome sequenced (for for neuro disorder) <u>Mother</u> has Likely Pathogenic *BRCA2* variant

'69+N' annotation:

69 = age in yrs

- + = harbors variant
- = known to not have variant

? = variant status unknown

N = No cancer

C = had cancer

Clinico-Molecular Diagnostic Probabilities (CMD)

- Just the test result
 - 65% probability of CMD
- Testee is phenotype negative @ 69
 - 47% probability of CMD
- Include test positive relatives
 - 85% probability of CMD
- Include all relatives with genotype probability
 - 83% probability of CMD

Pedigree-Based Posterior Probability of Clinico-Molecular Diagnosis

- *BRCA1* & *BRCA2* n=48
- Common AJ variants
 - Not Bayesian as pathogenicity ~100%
- Others range from 23.5-99.98%

A Probabilistic Model of Population Screening

- Robust variant classification to determine P(Path|Evid)
- Practical methods to determine P(Diagnosis | Pheno)
- Patient decision making support
- Defined care pathways & CDS

Kill Determinism

Two Closing Thoughts

- Must assess risk precisely
- Cannot assess risk accurately
- The numerical risk may not be the primary determinant of care management decisions

Second Closing Thought

- The larger challenge is to change our mindset from one of nondirectiveness to management
- The challenge will no longer be consoling & adaptation to diagnosis
- It will be to motivate people who don't have manifestations of disease to engage in desired health behaviors
 - Without requiring hours of genetics professional care

- Prior probability she has HBOC 1/400
- If one has HBOC, 75% chance you will identify P/LP variant in *BRCA1* or 2
- If one does not have HBOC, 0.1% chance you would harbor a P/LP BRCA variant (false positive)
- Posterior probability of disease: 65%

	+HBOC	-HBOC
Prior	0.0025	0.9975
Conditional	0.75	0.001
Joint	0.001875	0.0009975
Posterior	0.653	0.347

- Prior probability II-1 has HBOC 65%
- If the proband has HBOC, the likelihood that she would be cancer-free is 43.2% (ASK2ME)
- If the proband does not have HBOC, the likelihood she would be cancer free is 90.6%
- Posterior probability of HBOC is 47.3%

	+HBOC	-НВОС
Prior	0.652	0.347
Conditional	0.432	0.906
Joint	0.282	0.314
Posterior	0.473	0.527

- Instead of calculation 2, consider as conditional all the individuals who are genotyped & +
- 69+N .432 / .906
- 65+C .433 / .068
- 64-N & 37-N (not relevant maybe)

	+HBOC	-НВОС
Prior	0.652	0.348
Conditional	0.432*.433	0.906*.068
Joint	0.122	0.021
Posterior	0.853	0.147

- Instead of calculation 3, consider as conditional all the individuals who are genotyped & + & use Mendelian rules for ungenotyped people
- ((R⁺-R⁻)*0.5^N)+R⁻
- R⁺ = cancer risk of person who has HBOC
- R⁻ = cancer risk of person who doesn't have HBOC
- N = # of meioses from person with variant
- For conditional probability of cancer, taking into account relationship to genotype + individual :
- Father ((.1892-.1197)*1/2)+.1197 = .1544
- Mother 1-((.7117-.1506)*1/2)+.1506 = .5685
- Brother 1-((.0083-.0002)*1/2)+.0002 = .9957
- Son 1-((.0077-.0002)*1/2)+.0002 = .9960

- Instead of calculation 2, consider all
- 69+N .432 / .906
- 65+C .433 / .068
- Father ((.1892-.1197)*1/2)+.1197 = .1544 / .1167
- Mother 1-((.7117-.1506)*1/2)+.1506 = .5685 / .8494
- Brother 1-((.0083-.0002)*1/2)+.0002 = .9957 / .9998
- Son 1-((.0077-.0002)*1/2)+.0002 = .9960 / .9998

	+HBOC	-HBOC
Prior	0.652	0.348
Conditional	0.432*.433* .1544*.5685*.9 957*.9960	0.906*.068*.11 67*.8494*.999 8*.9998
Joint	0.0106	0.00212
Posterior	0.833	0.167

Secondary Findings Family Evaluation

Statement of the Problem

- Secondary Findings (SF) are genomic testing results that are returned in the absence of an indication for testing
 - Similar to population screening, very different from diagnostic testing
 - In general, the testee is not known have the associated phenotype *a priori*
 - Prior probability of disease ≈population risk (1/400-1/50,000)
 - In contrast, diagnostic testing prior probability of disease can be high 10->90%
 - Nearly all variants have a posterior probability of pathogenicity of <100%
 - Based on variant predictions and prior case evidence unrelated to family at hand
 - Given pathogenicity <100% and low prior probability of disease, Bayes says this results in a lower posterior probability of disease (vs diagnostic testing)
 - i.e., it enriches for truly benign variants that we currently (erroneously) believe to have high likelihood of pathogenicity

Nitty gritty

- All mendelian genetic diseases have to be defined as a state of increased propensity for disease manifestations
 - Lynch syndrome is the state of having increased liability to colon and endometrial cancer – whether or not you have cancer
 - Increased liability is very similar to penetrance
 - For some mendelian genetic diseases, penetrance is essentially 100%
 - For some it is quite low (5-10%)
- Different way to say this is that you can have a disease even if you don't have a clinical manifestation of disease (you are nonpenetrant)
 - We must distinguish someone who has the disorder but is nonpenetrant from someone who doesn't have the disorder

Nitty gritty

- If you harbor a variant with pathogenicity of 100%, then by definition anyone who harbors that variant has that disease
- If you harbor a variant with pathogenicity <100%, then there is a *likelihood* that you have the disease
 - The likelihood that you have the disease depends on your phenotype
 - If you have a manifestation of the disease, it is higher
 - If your family members have a manifestation, it is higher

I think that these are the only (reasonably) possible family genotypes and that all eight are equally likely

Limitations/Deficiencies

- Calculation of "cancer free" probably not correct
- Individuals over 85 treated as 85
- How to handle individuals with two cancers (357901)
- Inheritance pattern calculations (0.5^N) does not take into account skewing to one parent or the other based on affection status
- Does not take into account dependencies (if dad has variant, mom does not)
- Lumped P & LP variants together
- If a person has a proph surgery for an organ, how to take that into account when they are phenotype negative

Common Misconception

- "We performed population genomic ascertainment and observed that the penetrance was much lower than in phenotypic ascertainment"
- This is wrong
 - They are measuring both false positive

Closing Thought

- Stupid question
 - "Would you like to know if you have a high risk of developing cancer?"

Closing Thought

- Stupid question
 - "Would you like to know if you have a high risk of developing cancer?"
- Thoughtful question
 - "If you had a high risk of cancer would you rather know it and reduce it or would you rather ignore it?"

Isaac Asimov

 "Uncertainty that comes from knowledge is not the same as uncertainty that comes from ignorance."

Interpretation in Pathology

- 115 practicing pathologists reviewed 240 breast biopsy slides
- Truth = "Consensus-derived reference"

Consensus	Pathologist Interpretation		
	Concordance Rate (95% CI)	Discordance Rate for Overinterpretation (95% CI)	Discordance Rate for Underinterpretation (95% CI)
Benign, no Atypia	87 (85-89)	13 (11-15)	
Atypia	48 (44-53)	17 (15-21)	35 (31-39)
DCIS	84 (82-86)	3 (2-2)	13 (12-15)4 (3-6)
Invasive Carcinoma	96 (94-97)	Elmore JG et al JA	4 (3-6) MA 2015;313:1122

Interpretation in Pathology

- 115 practicing pathologists reviewed 240 breast biopsy slides
- Truth = "Consensus-derived reference"

Compared with the consensus-derived reference, overall concordance per slide was 75% (95% CI, 73%-77%)

Consensus	Pathologist Interpretation		
	Concordance Rate (95% CI)	Discordance Rate for Overinterpretation (95% CI)	Discordance Rate for Underinterpretation (95% CI)
Benign, no Atypia	87 (85-89)	13 (11-15)	
Atypia	48 (44-53)	17 (15-21)	35 (31-39)
DCIS	84 (82-86)	3 (2-2)	13 (12-15)4 (3-6)
Invasive Carcinoma	96 (94-97)	Elmore JG et al JA	4 (3-6) MA 2015;313:1122

Interpretation in Pathology

- 115 practicing pathologists reviewed 240 breast biopsy slides
- Truth = "Consensus-derived reference"

Compared with the consensus-derived reference, overall concordance per slide was 75% (95% CI, 73%-77%)

Consensus	Pathologist Interpretation		
	Concordance Rate (95% CI)	Discordance Rate for Overinterpretation (95% CI)	Discordance Rate for Underinterpretation (95% CI)
Benign, no Atypia	87 (85-89)	13 (11-15)	
Atypia	48 (44-53)	17 (15-21)	35 (31-39)
DCIS	84 (82-86)	3 (2-2)	13 (12-15)4 (3-6)
Invasive Carcinoma	96 (94-97)	Elmore JG et al JA	4 (3-6) MA 2015;313:1122

Uncertainty at another level: 0.5%-2.5% of histology reports are the result from some other patient...

How to calculate

	Has Marfan	Does not have Marfan
Prior	.75	.25
Conditional	.7	.001
Joint	.525	.00025
Posterior	.525/(.525+.00025) ≈ .9995	.00025/(.525+.00025) ≈ .0005

Context matters – enormously – V2

- Pediatrician orders exome on a toddler re autism
- No variant for the autism is identified
- There is a secondary finding of a pathogenic variant in *FBN1*
- This toddler has no apparent features of Marfan syndrome
- She is adopted, so she has no known family history
- What is the likelihood the toddler has Marfan syndrome?

Context matters – enormously – V2

- Pediatrician orders exome on a toddler re autism
- No variant for the autism is identified
- There is a secondary finding of a pathogenic variant in FBN1
- This toddler has no apparent features of Marfan syndrome
- She is adopted, so she has no known family history
- What is the likelihood the toddler has Marfan syndrome?
- ~8%

How to calculate V2

	Has Marfan	Does not have Marfan
Prior	.00013	.99987
Conditional	.7	.001
Joint	.000091	≈.001
Posterior	.000091/(.000091+.001) ≈ .085	.001/(.000091+.001) ≈ .915

Back to variant classification...

- Let's start with an easy one
- *GLI3* c.444C>A; p.Y148*
- GLI3 zinc finger transcription factor
 - Assoc w Greig cephalopolysyndactyly, Pallister-Hall syndrome, various polydactyly, etc.
- Putative loss of function variant