Genomic Screening and the Reverend Bayes

Les Biesecker
Center for Precision Health Research
NHGRI
November 8, 2023

Genomes \longrightarrow Health

Genomics is Not Exceptional

- Genomic testing, with few exceptions, performs like every other medical test
- It has sensitivity, specificity, PPV, \& NPV
- Like any other test, the PPV depends on the testing scenario

Genetics Practice is Exceptional

- We generally use genomic testing in scenarios where prior probability of disease is high
- Ironically, in this setting, the testing little changes diagnosis \& management
- When testing in low prior probability settings, the game is different

Math...

- $P(A)$
- The probability of A
- $P(A \mid B)$
- The probability that A is true if B is true

How To Think Clearly About Screening

- Analytic validity is a probability
- Clinical validity is a probability
- Pathogenicity
- Clinico-molecular diagnosis is a probability
- Penetrance is a probability
- Expressivity is a probability
- We need a formal, probabilistic model of genetic diagnosis

A Few Concepts \& Definitions

- All genetic disease is an increased susceptibility to abnormal phenotype
- Having the disease but no manifestations is non-penetrance
- Not having the disease $=$ non-penetrance
- Nearly all variants have a probability of pathogenicity
- They are not certain to be causative
- A few have probability of pathogenicity 100%
- For these, harboring the variant \equiv has the disease \neq has the phenotype

Steps

- Assess probability of pathogenicity of the variant
- P(Path|Evid)
- Predictors plus historical data on variant
- Clinical interpretation of person with variant
- P(Disorder|Phen)
- Clinico-molecular diagnosis
- Harboring a variant \neq having disorder
- For those with disorder but without phenotype
- P(Phen|Disorder)

Graphical Math - Marfan Syndrome

Screening Testing

Example Scenario

37 yo man trio exome sequenced (for for neuro disorder)

Mother has Likely Pathogenic

 BRCA2 variant' $69+N$ ' annotation:
$69=$ age in yrs

+ = harbors variant
- = known to not have variant
? = variant status unknown
$\mathrm{N}=$ No cancer
$\mathrm{C}=$ had cancer

Clinico-Molecular Diagnostic Probabilities (CMD)

- Just the test result
- 65\% probability of CMD
- Testee is phenotype negative @ 69
- 47\% probability of CMD
- Include test positive relatives
- 85\% probability of CMD
- Include all relatives with genotype probability
- 83% probability of CMD

Pedigree-Based Posterior Probability of Clinico-Molecular Diagnosis

- BRCA1 \& BRCA2 n=48
- Common AJ variants
- Not Bayesian as pathogenicity ~100\%
- Others range from 23.5-99.98\%

A Probabilistic Model of Population Screening

- Robust variant classification to determine P(Path|Evid)
- Practical methods to determine P(Diagnosis|Pheno)
- Patient decision making support
- Defined care pathways \& CDS

Kill Determinism

Two Closing Thoughts

- Must assess risk precisely
- Cannot assess risk accurately
- The numerical risk may not be the primary determinant of care management decisions

Second Closing Thought

- The larger challenge is to change our mindset from one of nondirectiveness to management
- The challenge will no longer be consoling \& adaptation to diagnosis
- It will be to motivate people who don't have manifestations of disease to engage in desired health behaviors
- Without requiring hours of genetics professional care

Bayes Calculation 1

- Prior probability she has HBOC 1/400
- If one has HBOC, 75% chance you will identify P/LP variant in BRCA1 or 2
- If one does not have HBOC, 0.1% chance you would harbor a P/LP BRCA variant (false positive)
- Posterior probability of disease: 65\%

	+ HBOC	-HBOC
Prior	0.0025	0.9975
Conditional	0.75	0.001
Joint	0.001875	0.0009975
Posterior	0.653	0.347

Bayes Calculation 2

- Prior probability II-1 has HBOC 65\%
- If the proband has HBOC, the likelihood that she would be cancer-free is 43.2% (ASK2ME)
- If the proband does not have HBOC, the likelihood she would be cancer free is 90.6%
- Posterior probability of HBOC is 47.3%

	+ HBOC	-HBOC
Prior	0.652	0.347
Conditional	0.432	0.906
Joint	0.282	0.314
Posterior	0.473	0.527

Bayes Calculation 3

- Instead of calculation 2 , consider as conditional all the individuals who are genotyped \& +
- 69+N . 432 / . 906
- 65+C. . 433 / . 068
- 64-N \& 37-N (not relevant - maybe)

	+ HBOC	-HBOC
Prior	0.652	0.348
Conditional	$0.432^{*} .433$	$0.906^{*} .068$
Joint	0.122	0.021
Posterior	0.853	0.147

Bayes Calculation 4

- Instead of calculation 3, consider as conditional all the individuals who are genotyped $\&+\&$ use Mendelian rules for ungenotyped people
- (($\left.\left.\mathrm{R}^{+}-\mathrm{R}^{-}\right)^{*} 0.5^{\wedge} \mathrm{N}\right)+\mathrm{R}^{-}$
- $\mathrm{R}^{+}=$cancer risk of person who has HBOC
- $\mathrm{R}^{-}=$cancer risk of person who doesn't have HBOC
- $\mathrm{N}=\#$ of meioses from person with variant
- For conditional probability of cancer, taking into account relationship to genotype + individual :

- Father ((.1892-.1197)*1/2)+. $1197=.1544$
- Mother 1-((.7117-.1506)*1/2)+. $1506=.5685$
- Brother 1-((.0083-.0002)*1/2)+. $0002=.9957$
- Son 1-((.0077-.0002)*1/2)+.0002 = . 9960

Bayes Calculation 4

- Instead of calculation 2, consider all
- 69+N . 432 / . 906
- 65+C . 433 / . 068
- Father ((.1892-.1197)*1/2)+. $1197=.1544 / .1167$
- Mother 1-((.7117-.1506)*1/2)+. $1506=.5685 / .8494$
- Brother 1-((.0083-.0002)*1/2)+.0002 = . $9957 / .9998$
- Son 1-((.0077-.0002)*1/2)+.0002 = . $9960 / .9998$

	+ HBOC	-HBOC
Prior	0.652	0.348
Conditional	$0.432^{*} .433^{*}$	$0.906^{*} .068^{*} .11$
	$.1544^{*} .5685^{*} .9$	$67^{*} .8494^{*} .999$
	$957^{*} .9960$	$8^{*} .9998$
Joint	0.0106	0.00212
Posterior	0.833	0.167

Secondary Findings Family Evaluation

Statement of the Problem

- Secondary Findings (SF) are genomic testing results that are returned in the absence of an indication for testing
- Similar to population screening, very different from diagnostic testing
- In general, the testee is not known have the associated phenotype a priori
- Prior probability of disease \approx population risk (1/400-1/50,000)
- In contrast, diagnostic testing prior probability of disease can be high 10->90\%
- Nearly all variants have a posterior probability of pathogenicity of $<100 \%$
- Based on variant predictions and prior case evidence unrelated to family at hand
- Given pathogenicity $<100 \%$ and low prior probability of disease, Bayes says this results in a lower posterior probability of disease (vs diagnostic testing)
- i.e., it enriches for truly benign variants that we currently (erroneously) believe to have high likelihood of pathogenicity

Nitty gritty

- All mendelian genetic diseases have to be defined as a state of increased propensity for disease manifestations
- Lynch syndrome is the state of having increased liability to colon and endometrial cancer - whether or not you have cancer
- Increased liability is very similar to penetrance
- For some mendelian genetic diseases, penetrance is essentially 100%
- For some it is quite low (5-10\%)
- Different way to say this is that you can have a disease even if you don't have a clinical manifestation of disease (you are nonpenetrant)
- We must distinguish someone who has the disorder but is nonpenetrant from someone who doesn't have the disorder

Nitty gritty

- If you harbor a variant with pathogenicity of 100%, then by definition anyone who harbors that variant has that disease
- If you harbor a variant with pathogenicity $<100 \%$, then there is a likelihood that you have the disease
- The likelihood that you have the disease depends on your phenotype
- If you have a manifestation of the disease, it is higher
- If your family members have a manifestation, it is higher

I think that these are the only (reasonably) possible family genotypes and that all eight are equally likely

Limitations/Deficiencies

- Calculation of "cancer free" probably not correct
- Individuals over 85 treated as 85
- How to handle individuals with two cancers (357901)
- Inheritance pattern calculations ($0.5^{\wedge} \mathrm{N}$) does not take into account skewing to one parent or the other based on affection status
- Does not take into account dependencies (if dad has variant, mom does not)
- Lumped P \& LP variants together
- If a person has a proph surgery for an organ, how to take that into account when they are phenotype negative

Common Misconception

- "We performed population genomic ascertainment and observed that the penetrance was much lower than in phenotypic ascertainment"
- This is wrong
- They are measuring both false positive

Closing Thought

- Stupid question
- "Would you like to know if you have a high risk of developing cancer?"

Closing Thought

- Stupid question
- "Would you like to know if you have a high risk of developing cancer?"
- Thoughtful question
- "If you had a high risk of cancer would you rather know it and reduce it or would you rather ignore it?"

Isaac Asimov

- "Uncertainty that comes from knowledge is not the same as uncertainty that comes from ignorance."

Interpretation in Pathology

- 115 practicing pathologists reviewed 240 breast biopsy slides
- Truth = "Consensus-derived reference"

Consensus	Pathologist Interpretation		
	Concordance Rate $(95 \% \mathrm{Cl})$	Discordance Rate for Overinterpretation $(95 \% \mathrm{CI})$	Discordance Rate for Underinterpretation $(95 \% \mathrm{CI})$
Benign, no Atypia	$87(85-89)$	$13(11-15)$	
Atypia	$48(44-53)$	$17(15-21)$	$35(31-39)$
DCIS	$84(82-86)$	$3(2-2)$	$13(12-15) 4(3-6)$
Invasive Carcinoma	$96(94-97)$		$4(3-6)$

Hat tip: Bob
Nussbaum

Interpretation in Pathology

- 115 practicing pathologists reviewed 240 breast biopsy slides
- Truth = "Consensus-derived reference"

Compared with the consensus-derived reference, overall concordance per slide was 75% ($95 \% \mathrm{Cl}, 73 \%-77 \%$)

Consensus	Pathologist Interpretation		
	Concordance Rate $(95 \% \mathrm{CI})$	Discordance Rate for Overinterpretation $(95 \% ~ C I)$	Discordance Rate for Underinterpretation $(95 \%$ CI)
Benign, Atypia	$87(85-89)$	$13(11-15)$	
Atypia	$48(44-53)$	$17(15-21)$	$35(31-39)$
DCIS	$84(82-86)$	$3(2-2)$	$13(12-15) 4(3-6)$
Invasive Carcinoma	$96(94-97)$		$4(3-6)$

Interpretation in Pathology

- 115 practicing pathologists reviewed 240 breast biopsy slides
- Truth = "Consensus-derived reference"

Compared with the consensus-derived reference, overall concordance per slide was 75% ($95 \% \mathrm{Cl}, 73 \%-77 \%$)

Consensus	Pathologist Interpretation		
	Concordance Rate (95\% CI)	Discordance Rate for Overinterpretation (95\% CI)	Discordance Rate for Underinterpretation (95\% CI)
Benign, no Atypia	87 (85-89)	13 (11-15)	
Atypia	48 (44-53)	17 (15-21)	35 (31-39)
DCIS	84 (82-86)	3 (2-2)	13 (12-15)4 (3-6)
Invasive Carcinoma	96 (94-97)	Elmore JG et al	A 2015;313:1122

Uncertainty at another level: 0.5\%-2.5\% of histology reports are the result from some other patient...

How to calculate

	Has Marfan	Does not have Marfan
Prior	.75	.25
Conditional	.7	.001
Joint	.525	.00025
Posterior	$.525 /(.525+.00025) ~$.9995	$.00025 /(.525+.00025)$

Context matters - enormously - V2

- Pediatrician orders exome on a toddler re autism
- No variant for the autism is identified
- There is a secondary finding of a pathogenic variant in FBN1
- This toddler has no apparent features of Marfan syndrome
- She is adopted, so she has no known family history
-What is the likelihood the toddler has Marfan syndrome?

Context matters - enormously - V2

- Pediatrician orders exome on a toddler re autism
- No variant for the autism is identified
- There is a secondary finding of a pathogenic variant in FBN1
- This toddler has no apparent features of Marfan syndrome
- She is adopted, so she has no known family history
- What is the likelihood the toddler has Marfan syndrome?
- ~8\%

How to calculate V2

	Has Marfan	Does not have Marfan
Prior	.00013	.99987
Conditional	.7	.001
Joint	.000091	$\approx .001$
Posterior	$.000091 /(.000091+.001) \approx$.085	$.001 /(.000091+.001) \approx$.915

Back to variant classification...

- Let's start with an easy one
- GLI3 c.444C>A; p.Y148*
- GLI3 zinc finger transcription factor
- Assoc w Greig cephalopolysyndactyly, Pallister-Hall syndrome, various polydactyly, etc.
- Putative loss of function variant

