Nanomedicine

Overview

What if doctors had tiny tools that could search out and destroy the very first cancer cells of a tumor developing in the body? What if a cell's broken part could be removed and replaced with a functioning miniature biological machine? Or what if molecule-sized pumps could be implanted in sick people to deliver life-saving medicines precisely where they are needed? These scenarios may sound unbelievable, but they are the ultimate goals of nanomedicine, a cutting-edge area of biomedical research that seeks to use nanotechnology tools to improve human health.

Top of page

What is a nanometer?

A lot of things are small in today's high-tech world of biomedical tools and therapies. But when it comes to nanomedicine, researchers are talking very, very small. A nanometer is one-billionth of a meter, too small even to be seen with a conventional lab microscope.

Top of page

What is nanotechnology?

Nanotechnology is the broad scientific field that encompasses nanomedicine. It involves the creation and use of materials and devices at the level of molecules and atoms, which are the parts of matter that combine to make molecules. Non-medical applications of nanotechnology now under development include tiny semiconductor chips made out of strings of single molecules and miniature computers made out of DNA, the material of our genes. Federally supported research in this area, conducted under the rubric of the National Nanotechnology Initiative, is ongoing with coordinated support from several agencies.

Top of page

What is being done to advance nanomedicine?

For hundreds of years, microscopes have offered scientists a window inside cells. Researchers have used ever more powerful visualization tools to extensively categorize the parts and sub-parts of cells in vivid detail. Yet, what scientists have not been able to do is to exhaustively inventory cells, cell parts, and molecules within cell parts to answer questions such as, "How many?" "How big?" and "How fast?" Obtaining thorough, reliable measures of quantity is the vital first step of nanomedicine.

As part of the National Institutes of Health (NIH) Common Fund [nihroadmap.nih.gov], the NIH [nih.gov] has established a handful of nanomedicine centers. These centers are staffed by a highly interdisciplinary scientific crew, including biologists, physicians, mathematicians, engineers and computer scientists. Research conducted over the first few years was spent gathering extensive information about how molecular machines are built.

Once researchers had catalogued the interactions between and within molecules, they turned toward using that information to manipulate those molecular machines to treat specific diseases.  For example, one center is trying to return at least limited vision to people who have lost their sight. Others are trying to develop treatments for severe neurological disorders, cancer, and a serious blood disorder. 

The availability of innovative, body-friendly nanotools that depend on precise knowledge of how the body's molecular machines work, will help scientists figure out how to build synthetic biological and biochemical devices that can help the cells in our bodies work the way they were meant to, returning the body to a healthier state.

Top of page

Last Updated: January 22, 2014