NHGRI-Related News

A listing of news releases from other National Institutes of Health (NIH) institutes and centers, academic and non-profit institutions, and scientists or scientific societies related to NHGRI-funded work.

NHGRI-Related News Archive


  • April 27, 2015: Study Demonstrates Potential of Rapid Whole-Genome Sequencing in Critically Ill Infants New
    From Children's Mercy Hospital, Kansas City: A study published in The Lancet Respiratory Medicine and presented at the annual Pediatric Academic Societies Meeting reveals the early results of the clinical usefulness of rapid whole-genome sequencing in neonatal and pediatric intensive care units (NICUs and PICUs). Children's Mercy Kansas City's STAT-Seq test helped diagnose a genetic disease in more than one half of 35 critically ill infants tested, compared to just nine percent with standard genetic tests.  As a result of receiving a specific disease diagnosis, clinical care was refined in 62 percent of infants, including 19 percent who had a markedly favorable change in treatment, and palliative care was initiated in 33 percent. The results underscore the importance of the larger pilot project to explore newborn genomics, partially funded by the National Human Genome Research Institute (NHGRI).
  • April 15, 2015: Mathematical Technique Reveals DNA Patterns That Increase Accuracy of Ovarian Cancer Prognosis New
    From the University of Utah: Nearly anyone touched by ovarian cancer will tell you: it's devastating. It's bad enough that cancer in almost 80 percent of patients reaches advanced stages before diagnosis, and that most patients are expected to die within five years. But just as painfully, roughly one quarter of women diagnosed have no warning that they are resistant to platinum-based chemotherapy, the main line of defense, nor that they will likely have 18 months to live. Now, University of Utah scientists have uncovered patterns of DNA anomalies that predict a woman's outcome significantly better than tumor stage. Published in the journal PLOS ONE, the patterns were discovered by using a new mathematical technique in the analysis of DNA profiles from the Cancer Genome Atlas, a national database containing data from hundreds of ovarian cancer patients.
  • March 19, 2015: New understanding of the inner workings of our genetic tool kit should help us make smarter repairs New
    From the California Institute for Regenerative Medicine: We have made great strides in the past decade in understanding the role of DNA structural components, the so-called epigenetics, but still have major gaps in our understanding of the many roles of RNA. With CIRM-funding, a team headed by Howard Chang at Stanford has gotten around a major hurdle in unlocking this complex issue.
  • March 9, 2015: The Cancer Genome Atlas (TCGA): The next stage
    From The Cancer Genome Atlas: The Cancer Genome Atlas (TCGA), the NIH research program that has helped set the standards for characterizing the genomic underpinnings of dozens of cancers on a large scale, is moving to its next phase. TCGA was launched by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) in 2006 as a pilot project to comprehensively characterize the genomic and molecular features of ovarian cancer and glioblastoma multiforme. The program grew to include samples from 11,000 patients across 33 tumor types and represents the largest tumor collection ever to be analyzed for key genomic and molecular characteristics.
  • March 6, 2015: Unregulated web marketing of genetic tests for personalized cancer care raises concerns in new study
    From the Dana-Farber Cancer Institute: Websites that market personalized cancer care services often overemphasize their purported benefits and downplay their limitations, and many sites offer genetic tests whose value for guiding cancer treatment has not been shown to be clinically useful, according to a new study from Dana-Farber Cancer Institute. Internet marketing of cancer-related gene tests is unregulated. Therefore, there is wide variation in how these services are presented - posing a challenge for consumers and their physicians, the researchers reported in the March 5, 2015 issue of the Journal of the National Cancer Institute. NHGRI's genetic testing fact sheet was cited by the consumer health website HealthDay as a good resource for information on genetic testing.
  • March 4, 2015: Genetically speaking, mammals are more like their fathers
    From UNC at Chapel Hill: You might resemble or act more like your mother, but a novel research study from UNC School of Medicine researchers reveals that mammals are genetically more like their dads. Specifically, the research shows that although we inherit equal amounts of genetic mutations from our parents - the mutations that make us who we are instead of some other person - we actually "use" more of the DNA that we inherit from our dads. The National Human Genome Research Institute and the National Institute of Mental Health funded the creation of the UNC Center for Integrated Systems Genetics (CISGen), which contributed to the development and funding of proof of principle experiments for the Collaborative Cross to find genetic and environmental factors important in psychiatry.
  • February 18, 2015: Predicting Cancers' Cell of Origin
    From Brigham and Women's Hospital: A study led by researchers from Brigham and Women's Hospital suggests a new way to trace cancer back to its cell type of origin. By leveraging the epigenome maps produced by the Roadmap Epigenomics Program - a resource of data collected from over 100 cell types - the research team found that the unique genetic landscape of a particular tumor could be used to predict that tumor's cell type of origin. The study, which appears this week in Nature, provides new insights into the early events that shape a cancer, and could have important implications for the many cancer patients for whom the originating site of the cancer is unknown. NHGRI's mission is to fund and explore research in genomics - including epigenomics - that will support discovering the foundation of human health.
  • February 18, 2015: New Insights into 3D Genome Organization and Genetic Variability
    From the University of California San Diego: While genomics is the study of all of the genes in a cell or organism, epigenomics is the study of all the genomic add-ons and changes that influence gene expression but aren't encoded in the DNA sequence. A variety of new epigenomic information is now available in a collection of studies published Feb. 19 in Nature by the National Institutes of Health (NIH) Roadmap Epigenomics Program. This information provides a valuable baseline for future studies of the epigenome's role in human development and disease. NHGRI's mission is to fund and explore research in genomics - including epigenomics - that will support discovering the foundation of human health.
  • February 18, 2015: NIH-supported researchers map epigenome of more than 100 tissue and cell types
    From the National Institutes of Health: Much like mapping the human genome laid the foundations for understanding the genetic basis of human health, new maps of the human epigenome may further unravel the complex links between DNA and disease. The epigenome is part of the machinery that helps direct how genes are turned off and on in different types of cells.Researchers supported by the National Institutes of Health Common Fund's Roadmap Epigenomics Program have mapped the epigenomes of more than 100 types of cells and tissues, providing new insight into which parts of the genome are used to make a particular type of cell. NHGRI's mission is to fund and explore research in genomics - including epigenomics - that will support discovering the foundation of human health.
  • February 17, 2015: DNA Sequencer the size of a mobile phone
    From the University of California Santa Cruz: Investigators at the UC Santa Cruz Genomics Institute have optimized performance of a mobile-phone-sized MinIONTM DNA sequencer, marketed by Oxford Nanopore. Their work was reported in Nature Methods on February 16, 2015.The MinION device reads individual DNA strands base-by-base as they pass through a nanoscale pore (nanopore) under control of an applied voltage. This process is facilitated by an enzyme bound to the DNA. The study was supported by National Human Genome Research Institute (NHGRI)
  • February 13, 2015: Largest ever genome-wide study on body fat and BMI strengthen genetic links to obesity
    From the University of North Carolina School of Medicine: There are many reasons why two people with the same diets and exercise regimens can gain different amounts of weight and why fat becomes stored in different parts of their bodies. Now, an international collaboration of scientists, including several from the UNC School of Medicine and the UNC Gillings School of Global Public Health, has helped researchers home in on genetic reasons. Their findings were published in companion papers - genome-wide association studies - in the journal Nature.
  • January 29, 2015: Neutron Beams Reveal How Two Potential Pieces of Parkinson's Puzzle Fit
    From NIST Center for Neutron Research: A team including scientists from the National Institute of Standards and Technology (NIST), NHGRI's Dr. Ellen Sidransky, have determined how two potentially key pieces of the Parkinson's puzzle fit together, in an effort to reveal how the still poorly understood illness develops and affects its victims.
  • January 28, 2015: Evolution of marine mammals to water life converges in some genes New
    From Baylor College of Medicine: When marine mammals such as whales, dolphins, manatees and walruses moved from land to water, a series of physical abilities --- limbs adapted for swimming, less dense bones that make them more buoyant and a large store of oxygen relative to their body size - made it possible. Yet these animals made the transition from land to water millions of years apart. In a report that appears online in the journal Nature Genetics, an international consortium of researchers that includes those at Baylor College of Medicine looked at the genomes of these four marine mammals and compared them to their closest land kin. The genomes of the whale and dolphin were compared to that of the cow, the walrus to the dog and the manatee to the elephant. NHGRI helped fund the research.
  • January 21, 2015: USC neuroscientists lead global ENIGMA consortium to crack brain's genetic code
    From University of Southern California: In the largest collaborative study of the brain to date, researchers from the Keck School of Medicine of the University of Southern California (USC) led a global consortium of 190 institutions to identify eight common genetic mutations that appear to age the brain an average of three years. The discovery could lead to targeted therapies and interventions for Alzheimer's disease, autism and other neurological conditions. An international team of roughly 300 scientists known as the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) Network pooled brain scans and genetic data worldwide to pinpoint genes that enhance or break down key brain regions in people from 33 countries. This is the first high-profile study since the National Institutes of Health (NIH) launched its Big Data to Knowledge (BD2K) centers of excellence in 2014. BD2K involves all institutes at the NIH, including NHGRI.
  • January 16, 2015: Penn State and Geisinger announce new collaborative gene research project
    From Penn State University: Marylyn Ritchie, Ph.D., professor of biochemistry and molecular biology and director of the Center for Systems Genomics in the Huck Institutes of the Life Sciences at Penn State University, will lead a collaborative effort between Penn State and Geisinger Research to connect the genome data of 100,000 anonymous patients with their medical histories, in order to identify the genetic and environmental basis of human disease. This new program was developed to harness the data resources being generated through a large-scale DNA-sequencing project at Geisinger in collaboration with Regeneron Pharmaceuticals, where at least 100,000 Geisinger patients will be sequenced over the next five years. Dr. Ritchie is is the lead investigator in coordinating the genomic data in the eMERGE network, funded by the National Human Genome Research Institute (NHGRI).
  • January 14, 2015: Alexander Hoffmann, Douglas Black awarded NIH grant to study immune system's response to pathogens
    From UCLA: UCLA professors of microbiology, immunology and molecular genetics Alexander Hoffmann and Douglas Black have been awarded a three-year, $6 million grant from the National Institutes of Health's Genomics of Gene Regulation (GGR) program of the National Human Genome Research Institute (NHGRI). Hoffman, director of UCLA's new Institute for Quantitative and Computational Biosciences (QC Bio), conducts research to understand and decode the language of the cell. Black, a Howard Hughes Medical Institute Investigator, studies the regulation of alternative splicing in mammalian cells and the biochemical mechanisms that control changes in splice sites.
  • January 7, 2015: NIH teams with industry to develop treatments for Niemann-Pick Type C disease
    From the National Institutes of Health: Researchers from the National Institutes of Health have entered into an agreement with biotechnology company Vtesse, Inc., of Gaithersburg, Maryland, to develop treatments for Niemann-Pick disease type C (NPC) and other lysosomal storage disorders. Lysosomal storage diseases, also known as lipid storage diseases, comprise about 50 rare inherited disorders that usually affect children. NHGRI scientists contributed to the research.
  • January 6, 2015: UMMS receives $6.1 M to develop model for predicting gene expression in human dendritic cells
    From University of Massachusetts Medical School: Jeremy Luban, MD, and Manuel Garber, PhD, will be principal investigators on a three-year, $6.1 million grant to develop a model for predicting whether a given gene will be turned on or off under specific conditions. Funding for the grant comes from the recently launched Genomics of Gene Regulation (GGR) program at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. In total, $28 million in new grants aimed at deciphering the language of gene expression were awarded.

To view the PDF document(s) on this page, you will need Adobe Reader. Download Adobe Reader

Top of page

Last Updated: May 4, 2015