NHGRI-Related News

A listing of news releases from other National Institutes of Health (NIH) institutes and centers, academic and non-profit institutions, and scientists or scientific societies related to NHGRI-funded work.

NHGRI-Related News Archive


  • September 29, 2015: New Hope for Undiagnosed, Critically Ill Newborns at Rady Children's New
    From Rady Children's Hospital, San Diego: In his first week in office, newly recruited president and CEO of the Rady Pediatric Genomics and Systems Medicine Institute (RPGSMI), Stephen Kingsmore, MD, DSc, will participate in a major announcement. Today in Genome Medicine, Dr. Kingsmore and a team of researchers report whole-genome sequencing for diagnosis in critically ill babies in 26 hours. Prior to this, the fastest genome-based diagnosis was 50 hours, a mark set in 2012. Cutting diagnosis time in half adds precious hours for critically ill infants with unknown conditions whose bodies are rapidly failing. The work was funded by a $6 million grant from the National Human Genome Research Institute.
  • September 29, 2015: Children's Mercy Researchers Achieve 26-Hour Rapid Whole-Genome Sequencing In Critically Ill Infants New
    From Children's Mercy, Kansas City: A study published today in Genome Medicine describes how researchers at Children's Mercy Kansas City cut in half the time needed for rapid whole-genome sequencing and genetic diagnosis in critically-ill infants, called STAT-Seq. Through a variety of enhancements, the Center for Pediatric Genomic Medicine at Children's Mercy completed the STAT-Seq test in 26 hours compared to 50 hours, improving on a turnaround time that was already the fastest available in the world. Children's Mercy is one of four pilot projects to explore newborn genomics through funding by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Human Genome Research Institute (NHGRI), both parts of the National Institutes of Health.
  • September 28, 2015: A new single-molecule tool to observe enzymes at work New
    From University of Washington: A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins. Their approach provides a new platform to view and record these nanoscale interactions in real time. As they report Sept. 28 in Nature Biotechnology, this tool should provide fast and reliable characterization of the different mechanisms cellular proteins use to bind to DNA strands - information that could shed new light on the atomic-scale interactions within our cells and help design new drug therapies against pathogens by targeting enzymes that interact with DNA. This discovery was made in the process of designing a nanopore system with which to sequence DNA, and the new capability can in turn be used to further improve the enzymes used in that DNA sequencing system. The research was funded by the Revolutionary Sequencing Technology Development Program - $1,000 Genome - administered by the National Human Genome Research Institute.
  • September 21, 2015: Consortium Awarded $12.4 Million to Study Genetic Heart Condition New
    From The Ohio State University: The Dilated Cardiomyopathy Consortium, led by Dr. Ray Hershberger at The Ohio State University Wexner Medical Center, has been awarded $12.4 million in grant funding by the National Heart Lung Blood Institute (NHLBI) and the National Human Genome Research Institute (NHGRI). The Consortium, composed of researchers at 11 clinical sites, will study the genetic basis of dilated cardiomyopathy (DCM) over the next five years. The study is called 'Precision Medicine for Dilated Cardiomyopathy in European and African Ancestry. DCM is a condition in which the heart muscle weakens and the left ventricle enlarges. It is the most common cause for patients needing a heart transplant and it is responsible for about one in three cases of heart failure.  
  • September 4, 2015: Genetic landscape can impact treatment for children with rare, aggressive cancer New
    From Geisinger Health System: Two Geisinger researchers, leading a large team of investigators, have been awarded more than $3.5 million as part of a national effort to better understand the genetic basis of disease and to tailor medical care to people based on their genetic makeup. Marc S. Williams, M.D., director of the Genomic Medicine Institute, and Marylyn D. Ritchie, Ph.D., director of biomedical and translational informatics, will spend the next four years combining DNA sequence information and health information in thousands of patients' electronic medical records to study two disorders: familial hypercholesterolemia and chronic rhinosinusitis. They will examine and test approaches to discussing familial hypercholesterolemia genomic sequencing results with patients and families, and also how family members communicate with one another. They also will look at the impact of the environment on chronic rhinosinusitis. The award from the National Institutes of Health was announced this week and is part of the Electronic Medical Records and Genomics (eMERGE) network administered by the National Human Genome Research Institute (NHGRI).
  • September 1, 2015: Genetic landscape can impact treatment for children with rare, aggressive cancer
    From University of Michigan Health System: For children with rare, aggressive and advanced cancer, precision medicine may help doctors determine their best treatment options, a new study finds. Using information from a patient's entire genome helped suggest personalized treatment options for nearly half of children with cancer, and led to specific treatment changes in a quarter of these patients, according to researchers at the University of Michigan Comprehensive Cancer Center and C.S. Mott Children's Hospital. The study includes sequencing the tumor's DNA and RNA as well as normal DNA from children and young adults with cancer that has relapsed or that is rare. Results from the first 102 patients enrolled are published in the September 1 issue of Journal of the American Medical Association. Funding for this study was provided in part by the National Institutes of Health Clinical Sequencing Exploratory Research (CSER) Consortium.
  • August 7, 2015: Scientists adopt new strategy to find Huntington's disease therapies
    From the National Institute of Neurological Disorders and Stroke: Scientists searched the chromosomes of more than 4,000 Huntington's disease patients and found that DNA repair genes may determine when the neurological symptoms begin. The results may provide a guide for discovering new treatments for Huntington's disease and a roadmap for studying other neurological disorders. For this study, scientists employed a novel application of Genome-Wide Association Study analysis, a technique that scientists typically use to search for single letter changes to the DNA code on patients' chromosomes, which may increase or decrease their chances of having the disease. This work was supported in part by grants from the National Human Genome Research Institute.
  • August 3, 2015: Researchers awarded $14 million for two precision health projects
    From Stanford School of Medicine: The National Institutes of Health has awarded the Stanford School of Medicine $14 million in funding for two projects that will advance the practice of precision health. The first grant is four-year, $10 million grant from the National Institute of General Medical Sciences (NIGMS) to expand their Pharmacogenomics Knowledgebase (PharmGKB). The second grant is a three-year, $4 million grant from the NIGMS and the National Human Genome Research Institute for the Clinical Pharmacogenetics Implementation Consortium (CPIC), which publishes clinical guidelines that teach healthcare providers how to use information about their patients' genetics to guide and optimize drug prescriptions.
  • July 23, 2015: Study: Glioma Tumor's Genetic Profile More Telling Than Physical Appearance
    From University of Cincinnati: In a study published the June 10 issue of New England Journal of Medicine, researchers from the researchers from the Brain Tumor Center at the University of Cincinnati (UC) Neuroscience Institute and the UC Cancer Institute discovered that some glioma tumors that appeared to be "lower grade" contained a genetic characteristic that caused them to behave like the most aggressive, high-grade gliomas, also known as glioblastoma multiforme. The study was recently published by the The Cancer Genome Atlas (TCGA) network. TCGA is a joint project of the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health.
  • July 22, 2015: Media Availability: Researchers Identify Promising Therapy for Rare Immune Disorder
    From the National Institute of Allergy and Infectious Diseases: Researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and the Cincinnati Children's Hospital Medical Center report on a promising therapy for people with LRBA deficiency, a rare immune disorder that lacks effective treatments and is caused by mutations in the LRBA gene. The researchers found that the drug abatacept, which is FDA-approved for treating rheumatoid arthritis, may be an effective long-term therapy for LRBA deficiency. Furthermore, the team has discovered that LRBA protein plays a role in limiting the activity of immune cells. This work was supported in part by grants from National Human Genome Research Institute.
  • June 18, 2015: Genomic discovery of skin cancer subtypes provides potential 'signpost' for drug targets
    From MD Anderson Anderson Cancer Center: As part of The Cancer Genome Atlas (TCGA), researchers from the University of Texas MD Anderson Cancer Center identified four melanoma subtypes: BRAF, RAS, NF1 and Triple-WT, which were defined by presence or absence of mutations from analysis of samples obtained from 331 patients. The five-year study resulted from an international collaboration of over 300 researchers from more than five countries, including Australia, Germany and Canada. Results from the study were published in the June 18 issue of Cell. The TCGA is a joint project of the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health.
  • June 15, 2015: Vulnerabilities in Genome's 'Dimmer Switches' Should Shed Light on Hundreds of Complex Diseases
    From Johns Hopkins Medicine: Up to one-fifth of human DNA act as dimmer switches for nearby genes, but scientists have long been unable to identify precisely which mutations in these genetic control regions really matter in causing common diseases. Now, a decade of work at Johns Hopkins has yielded a computer formula that predicts with far more accuracy than current methods which mutations are likely to have the largest effect on the activity of the dimmer switches, suggesting new targets for diagnosis and treatment of many diseases. A summary of the research will be published online June 15 in the journal Nature Genetics. This work was supported in part by grants from National Human Genome Research Institute.
  • June 11, 2015: Reclassifying brain tumors with precision
    From Emory University: A ground-breaking study that is part of The Cancer Genome Atlas (TCGA) Research Network will change the way patients with diffuse gliomas, a form of brain tumor, will be diagnosed and treated in the future. More than 300 researchers from 44 institutions contributed to a molecular analysis of the tumors. They found that molecular diagnostics are much more precise and reproducible than looking at tissue under a microscope for classification. This is a major step in starting to classify and treat brain tumors based on their genetic makeup rather than their microscopic appearance, which has been the traditional diagnostic approach for over 100 years. The findings are published on line in the New England Journal of Medicine. TCGA was launched by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) in 2006.
  • June 8, 2015: Stanford researchers suss out cancer mutations in genome's dark spots
    From Stanford University: Geneticist Michael Snyder, Ph.D., and postdoctoral scholar Collin Melton, Ph.D., recently combined information from The Cancer Genome Atlas, a national effort to sequence and identify mutations in the genomes of many different types of cancers, with data from the national ENCODE Project, which serves as an encyclopedia of DNA functional regions, or elements. Their aim was to better understand the roles that mutations in regulatory regions may play in cancer development. Snyder and Melton found that fewer than one of every thousand mutations in each cancer type occurs in the coding region of a gene. In contrast, more than 30 percent of the mutations occur in regulatory regions. The study was published this morning in Nature Genetics. Both ENCODE and The Cancer Genome Atlas are research programs from NHGRI.
  • May 29, 2015: Single-cell analysis hits its stride
    From the Broad Institute: The Human Genome Project gave us an incredible foundation from which to understand our potential genetic repertoire. In order to understand the actual roles of particular genes in disease, however, it is not only critical to identify genes, but also to know in which cells the genes are expressed and when. The research was funded in part by NHGRI.
  • May 29, 2015: New platforms genetically barcode tens of thousands of cells at a time
    From Harvard University: New platforms genetically barcode tens of thousands of cells at a time
    John Franklin Enders University professor Matt Kirschner and Steven McCarroll, assistant professor of genetics at HMS, reported this week in separate papers that their labs have developed high-throughput techniques to quickly, easily and inexpensively give every cell in a sample a unique genetic barcode before it goes into the blender. The research was funded in part by NHGRI.
  • May 27, 2015: Congressional Action Needed to Optimize Regulation of Genomic Tests
    From University of Houston Law: The latest generation of genomic testing offers a chance for significant improvements in patient care, disease prevention and, possibly, even the cost-effectiveness of healthcare. However, Congress needs to act to incentivize the development of the massive data systems that doctors and regulators will need to make these tests safe and effective for patients, according to researchers. The Special Report by Barbara J. Evans, Ph.D., J.D. of the University of Houston Law Center, and Wylie Burke, M.D., Ph.D. and Gail P. Jarvik, M.D., Ph.D, both of the University of Washington School of Medicine, appears ahead of print in the May 27 online edition of the New England Journal of Medicine, the leading U.S. journal of original medical research and commentary.
  • May 13, 2015: Genome: Unlocking Life's Code Opens May 15 at the St. Louis Science CenterPDF file
    From the St. Louis Science Center: The first state-of-the-art exhibition about genomic science, Genome: Unlocking Life's Code opens May 15, 2015 at the Saint Louis Science Center. The exhibition is the result of a unique partnership of the Smithsonian Institution, NHGRI and the National Institutes of Health.
  • April 27, 2015: Study Demonstrates Potential of Rapid Whole-Genome Sequencing in Critically Ill Infants
    From Children's Mercy Hospital, Kansas City: A study published in The Lancet Respiratory Medicine and presented at the annual Pediatric Academic Societies Meeting reveals the early results of the clinical usefulness of rapid whole-genome sequencing in neonatal and pediatric intensive care units (NICUs and PICUs). Children's Mercy Kansas City's STAT-Seq test helped diagnose a genetic disease in more than one half of 35 critically ill infants tested, compared to just nine percent with standard genetic tests. As a result of receiving a specific disease diagnosis, clinical care was refined in 62 percent of infants, including 19 percent who had a markedly favorable change in treatment, and palliative care was initiated in 33 percent. The results underscore the importance of the larger pilot project to explore newborn genomics, partially funded by the National Human Genome Research Institute (NHGRI).
  • April 15, 2015: Mathematical Technique Reveals DNA Patterns That Increase Accuracy of Ovarian Cancer Prognosis
    From the University of Utah: Nearly anyone touched by ovarian cancer will tell you: it's devastating. It's bad enough that cancer in almost 80 percent of patients reaches advanced stages before diagnosis, and that most patients are expected to die within five years. But just as painfully, roughly one quarter of women diagnosed have no warning that they are resistant to platinum-based chemotherapy, the main line of defense, nor that they will likely have 18 months to live. Now, University of Utah scientists have uncovered patterns of DNA anomalies that predict a woman's outcome significantly better than tumor stage. Published in the journal PLOS ONE, the patterns were discovered by using a new mathematical technique in the analysis of DNA profiles from the Cancer Genome Atlas, a national database containing data from hundreds of ovarian cancer patients.
  • March 19, 2015: New understanding of the inner workings of our genetic tool kit should help us make smarter repairs
    From the California Institute for Regenerative Medicine: We have made great strides in the past decade in understanding the role of DNA structural components, the so-called epigenetics, but still have major gaps in our understanding of the many roles of RNA. With CIRM-funding, a team headed by Howard Chang at Stanford has gotten around a major hurdle in unlocking this complex issue.
  • March 9, 2015: The Cancer Genome Atlas (TCGA): The next stage
    From The Cancer Genome Atlas: The Cancer Genome Atlas (TCGA), the NIH research program that has helped set the standards for characterizing the genomic underpinnings of dozens of cancers on a large scale, is moving to its next phase. TCGA was launched by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) in 2006 as a pilot project to comprehensively characterize the genomic and molecular features of ovarian cancer and glioblastoma multiforme. The program grew to include samples from 11,000 patients across 33 tumor types and represents the largest tumor collection ever to be analyzed for key genomic and molecular characteristics.
  • March 6, 2015: Unregulated web marketing of genetic tests for personalized cancer care raises concerns in new study
    From the Dana-Farber Cancer Institute: Websites that market personalized cancer care services often overemphasize their purported benefits and downplay their limitations, and many sites offer genetic tests whose value for guiding cancer treatment has not been shown to be clinically useful, according to a new study from Dana-Farber Cancer Institute. Internet marketing of cancer-related gene tests is unregulated. Therefore, there is wide variation in how these services are presented - posing a challenge for consumers and their physicians, the researchers reported in the March 5, 2015 issue of the Journal of the National Cancer Institute. NHGRI's genetic testing fact sheet was cited by the consumer health website HealthDay as a good resource for information on genetic testing.
  • March 4, 2015: Genetically speaking, mammals are more like their fathers
    From UNC at Chapel Hill: You might resemble or act more like your mother, but a novel research study from UNC School of Medicine researchers reveals that mammals are genetically more like their dads. Specifically, the research shows that although we inherit equal amounts of genetic mutations from our parents - the mutations that make us who we are instead of some other person - we actually "use" more of the DNA that we inherit from our dads. The National Human Genome Research Institute and the National Institute of Mental Health funded the creation of the UNC Center for Integrated Systems Genetics (CISGen), which contributed to the development and funding of proof of principle experiments for the Collaborative Cross to find genetic and environmental factors important in psychiatry.
  • February 18, 2015: Predicting Cancers' Cell of Origin
    From Brigham and Women's Hospital: A study led by researchers from Brigham and Women's Hospital suggests a new way to trace cancer back to its cell type of origin. By leveraging the epigenome maps produced by the Roadmap Epigenomics Program - a resource of data collected from over 100 cell types - the research team found that the unique genetic landscape of a particular tumor could be used to predict that tumor's cell type of origin. The study, which appears this week in Nature, provides new insights into the early events that shape a cancer, and could have important implications for the many cancer patients for whom the originating site of the cancer is unknown. NHGRI's mission is to fund and explore research in genomics - including epigenomics - that will support discovering the foundation of human health.
  • February 18, 2015: New Insights into 3D Genome Organization and Genetic Variability
    From the University of California San Diego: While genomics is the study of all of the genes in a cell or organism, epigenomics is the study of all the genomic add-ons and changes that influence gene expression but aren't encoded in the DNA sequence. A variety of new epigenomic information is now available in a collection of studies published Feb. 19 in Nature by the National Institutes of Health (NIH) Roadmap Epigenomics Program. This information provides a valuable baseline for future studies of the epigenome's role in human development and disease. NHGRI's mission is to fund and explore research in genomics - including epigenomics - that will support discovering the foundation of human health.
  • February 18, 2015: NIH-supported researchers map epigenome of more than 100 tissue and cell types
    From the National Institutes of Health: Much like mapping the human genome laid the foundations for understanding the genetic basis of human health, new maps of the human epigenome may further unravel the complex links between DNA and disease. The epigenome is part of the machinery that helps direct how genes are turned off and on in different types of cells.Researchers supported by the National Institutes of Health Common Fund's Roadmap Epigenomics Program have mapped the epigenomes of more than 100 types of cells and tissues, providing new insight into which parts of the genome are used to make a particular type of cell. NHGRI's mission is to fund and explore research in genomics - including epigenomics - that will support discovering the foundation of human health.
  • February 17, 2015: DNA Sequencer the size of a mobile phone
    From the University of California Santa Cruz: Investigators at the UC Santa Cruz Genomics Institute have optimized performance of a mobile-phone-sized MinIONTM DNA sequencer, marketed by Oxford Nanopore. Their work was reported in Nature Methods on February 16, 2015.The MinION device reads individual DNA strands base-by-base as they pass through a nanoscale pore (nanopore) under control of an applied voltage. This process is facilitated by an enzyme bound to the DNA. The study was supported by National Human Genome Research Institute (NHGRI).
  • February 13, 2015: Largest ever genome-wide study on body fat and BMI strengthen genetic links to obesity
    From the University of North Carolina School of Medicine: There are many reasons why two people with the same diets and exercise regimens can gain different amounts of weight and why fat becomes stored in different parts of their bodies. Now, an international collaboration of scientists, including several from the UNC School of Medicine and the UNC Gillings School of Global Public Health, has helped researchers home in on genetic reasons. Their findings were published in companion papers - genome-wide association studies - in the journal Nature.
  • January 29, 2015: Neutron Beams Reveal How Two Potential Pieces of Parkinson's Puzzle Fit
    From NIST Center for Neutron Research: A team including scientists from the National Institute of Standards and Technology (NIST), NHGRI's Dr. Ellen Sidransky, have determined how two potentially key pieces of the Parkinson's puzzle fit together, in an effort to reveal how the still poorly understood illness develops and affects its victims.
  • January 28, 2015: Evolution of marine mammals to water life converges in some genes
    From Baylor College of Medicine: When marine mammals such as whales, dolphins, manatees and walruses moved from land to water, a series of physical abilities --- limbs adapted for swimming, less dense bones that make them more buoyant and a large store of oxygen relative to their body size - made it possible. Yet these animals made the transition from land to water millions of years apart. In a report that appears online in the journal Nature Genetics, an international consortium of researchers that includes those at Baylor College of Medicine looked at the genomes of these four marine mammals and compared them to their closest land kin. The genomes of the whale and dolphin were compared to that of the cow, the walrus to the dog and the manatee to the elephant. NHGRI helped fund the research.
  • January 21, 2015: USC neuroscientists lead global ENIGMA consortium to crack brain's genetic code
    From University of Southern California: In the largest collaborative study of the brain to date, researchers from the Keck School of Medicine of the University of Southern California (USC) led a global consortium of 190 institutions to identify eight common genetic mutations that appear to age the brain an average of three years. The discovery could lead to targeted therapies and interventions for Alzheimer's disease, autism and other neurological conditions. An international team of roughly 300 scientists known as the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) Network pooled brain scans and genetic data worldwide to pinpoint genes that enhance or break down key brain regions in people from 33 countries. This is the first high-profile study since the National Institutes of Health (NIH) launched its Big Data to Knowledge (BD2K) centers of excellence in 2014. BD2K involves all institutes at the NIH, including NHGRI.
  • January 16, 2015: Penn State and Geisinger announce new collaborative gene research project
    From Penn State University: Marylyn Ritchie, Ph.D., professor of biochemistry and molecular biology and director of the Center for Systems Genomics in the Huck Institutes of the Life Sciences at Penn State University, will lead a collaborative effort between Penn State and Geisinger Research to connect the genome data of 100,000 anonymous patients with their medical histories, in order to identify the genetic and environmental basis of human disease. This new program was developed to harness the data resources being generated through a large-scale DNA-sequencing project at Geisinger in collaboration with Regeneron Pharmaceuticals, where at least 100,000 Geisinger patients will be sequenced over the next five years. Dr. Ritchie is is the lead investigator in coordinating the genomic data in the eMERGE network, funded by the National Human Genome Research Institute (NHGRI).
  • January 14, 2015: Alexander Hoffmann, Douglas Black awarded NIH grant to study immune system's response to pathogens
    From UCLA: UCLA professors of microbiology, immunology and molecular genetics Alexander Hoffmann and Douglas Black have been awarded a three-year, $6 million grant from the National Institutes of Health's Genomics of Gene Regulation (GGR) program of the National Human Genome Research Institute (NHGRI). Hoffman, director of UCLA's new Institute for Quantitative and Computational Biosciences (QC Bio), conducts research to understand and decode the language of the cell. Black, a Howard Hughes Medical Institute Investigator, studies the regulation of alternative splicing in mammalian cells and the biochemical mechanisms that control changes in splice sites.
  • January 7, 2015: NIH teams with industry to develop treatments for Niemann-Pick Type C disease
    From the National Institutes of Health: Researchers from the National Institutes of Health have entered into an agreement with biotechnology company Vtesse, Inc., of Gaithersburg, Maryland, to develop treatments for Niemann-Pick disease type C (NPC) and other lysosomal storage disorders. Lysosomal storage diseases, also known as lipid storage diseases, comprise about 50 rare inherited disorders that usually affect children. NHGRI scientists contributed to the research.
  • January 6, 2015: UMMS receives $6.1 M to develop model for predicting gene expression in human dendritic cells
    From University of Massachusetts Medical School: Jeremy Luban, MD, and Manuel Garber, PhD, will be principal investigators on a three-year, $6.1 million grant to develop a model for predicting whether a given gene will be turned on or off under specific conditions. Funding for the grant comes from the recently launched Genomics of Gene Regulation (GGR) program at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. In total, $28 million in new grants aimed at deciphering the language of gene expression were awarded.

To view the PDF document(s) on this page, you will need Adobe Reader. Download Adobe Reader

Top of page

Last Updated: September 28, 2015