Skip Navigation
NIH

Talking Glossary of Genetic Terms

Listen to Definition

Lawrence C. Brody, Ph.D. defines Messenger RNA (mRNA)

Messenger RNA (mRNA)

Messenger RNA (mRNA) is a single-stranded RNA molecule that is complementary to one of the DNA strands of a gene. The mRNA is an RNA version of the gene that leaves the cell nucleus and moves to the cytoplasm where proteins are made. During protein synthesis, an organelle called a ribosome moves along the mRNA, reads its base sequence, and uses the genetic code to translate each three-base triplet, or codon, into its corresponding amino acid.

How to cite this term How to cite this term for research papers


A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

Messenger RNA (mRNA)

Messenger RNA (mRNA) is a single-stranded RNA molecule that is complementary to one of the DNA strands of a gene. The mRNA is an RNA version of the gene that leaves the cell nucleus and moves to the cytoplasm where proteins are made. During protein synthesis, an organelle called a ribosome moves along the mRNA, reads its base sequence, and uses the genetic code to translate each three-base triplet, or codon, into its corresponding amino acid.

Narration Transcription

Messenger RNAs, also known as mRNA, are one of the types of RNA that are found in the cell. This particular one, like most RNAs, are made in the nucleus and then exported to the cytoplasm where the translation machinery, the machinery that actually makes proteins, binds to these mRNA molecules and reads the code on the mRNA to make a specific protein. So in general, one gene, the DNA for one gene, can be transcribed into an mRNA molecule that will end up making one specific protein.


Doctor Profile

Lawrence C. Brody, Ph.D.

Lawrence C. Brody, Ph.D.

Occupation
Chief & Senior Investigator, Genome Technology Branch; Head, Molecular Pathogenesis Section

Biography
Dr. Brody investigates the genetics of breast cancer and neural tube defects. As chief of the NHGRI Genome Technology Branch's Molecular Pathogenesis section, he is interested in studying genetic mutations that lead to perturbations in normal metabolic pathways and cause disorders such as cancer and birth defects. His laboratory investigates mutations in two breast cancer-linked genes, breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2). Dr. Brody's laboratory was among the first to report that women carrying BRCA1 or BRCA2 mutations have a higher risk of developing both breast and ovarian cancer than women without such mutations.

How to cite this termHow to cite this term for research papers

Illustrations

About the Talking Glossary
all Top