NHGRI logo

Genomic medicine is an emerging medical discipline that involves using genomic information about an individual as part of their clinical care (e.g. for diagnostic or therapeutic decision-making) and the health outcomes and policy implications of that clinical use. Already, genomic medicine is making an impact in the fields of oncology, pharmacology, rare and undiagnosed diseases, and infectious disease.

Background

The nation's investment in the Human Genome Project (HGP) was grounded in the expectation that knowledge generated as a result of that extraordinary research effort would be used to advance our understanding of biology and disease and to improve health. In the years since the HGP's completion there has been much excitement about the potential for so-called 'personalized medicine' to reach the clinic. More recently, a report from the National Academy of Sciences has called for the adoption of 'precision medicine,' where genomics, epigenomics, environmental exposure, and other data would be used to more accurately guide individual diagnosis. Genomic medicine, as defined above, can be considered a subset of precision medicine.

The translation of new discoveries to use in patient care takes many years. Based on discoveries over the past five to ten years, genomic medicine is beginning to fuel new approaches in certain medical specialties. Oncology, in particular, is at the leading edge of incorporating genomics, as diagnostics for genetic and genomic markers are increasingly included in cancer screening, and to guide tailored treatment strategies.

  • Background

    The nation's investment in the Human Genome Project (HGP) was grounded in the expectation that knowledge generated as a result of that extraordinary research effort would be used to advance our understanding of biology and disease and to improve health. In the years since the HGP's completion there has been much excitement about the potential for so-called 'personalized medicine' to reach the clinic. More recently, a report from the National Academy of Sciences has called for the adoption of 'precision medicine,' where genomics, epigenomics, environmental exposure, and other data would be used to more accurately guide individual diagnosis. Genomic medicine, as defined above, can be considered a subset of precision medicine.

    The translation of new discoveries to use in patient care takes many years. Based on discoveries over the past five to ten years, genomic medicine is beginning to fuel new approaches in certain medical specialties. Oncology, in particular, is at the leading edge of incorporating genomics, as diagnostics for genetic and genomic markers are increasingly included in cancer screening, and to guide tailored treatment strategies.

How do we get there?

It has often been estimated that it takes, on average, 17 years to translate a novel research finding into routine clinical practice. This time lag is due to a combination of factors, including the need to validate research findings, the fact that clinical trials are complex and take time to conduct and then analyze, and because disseminating information and educating healthcare workers about a new advance is not an overnight process.

Once sufficient evidence has been generated to demonstrate a benefit to patients, or "clinical utility," professional societies and clinical standards groups will use that evidence to determine whether to incorporate the new test into clinical practice guidelines. This determination will also factor in any potential ethical and legal issues, as well economic factors such as cost-benefit ratios.

The NHGRI Genomic Medicine Working Group (GMWG) has been gathering expert stakeholders in a series of genomic medicine meetings to discuss issues surrounding the adoption of genomic medicine. Particularly, the GMWG draws expertise from researchers at the cutting edge of this new medical toolset, with the aim of better informing future translational research at NHGRI. Additionally the working group provides guidance to the National Advisory Council on Human Genome Research (NACHGR) and NHGRI in other areas of genomic medicine implementation, such as outlining infrastructural needs for adoption of genomic medicine, identifying related efforts for future collaborations, and reviewing progress overall in genomic medicine implementation.

  • How do we get there?

    It has often been estimated that it takes, on average, 17 years to translate a novel research finding into routine clinical practice. This time lag is due to a combination of factors, including the need to validate research findings, the fact that clinical trials are complex and take time to conduct and then analyze, and because disseminating information and educating healthcare workers about a new advance is not an overnight process.

    Once sufficient evidence has been generated to demonstrate a benefit to patients, or "clinical utility," professional societies and clinical standards groups will use that evidence to determine whether to incorporate the new test into clinical practice guidelines. This determination will also factor in any potential ethical and legal issues, as well economic factors such as cost-benefit ratios.

    The NHGRI Genomic Medicine Working Group (GMWG) has been gathering expert stakeholders in a series of genomic medicine meetings to discuss issues surrounding the adoption of genomic medicine. Particularly, the GMWG draws expertise from researchers at the cutting edge of this new medical toolset, with the aim of better informing future translational research at NHGRI. Additionally the working group provides guidance to the National Advisory Council on Human Genome Research (NACHGR) and NHGRI in other areas of genomic medicine implementation, such as outlining infrastructural needs for adoption of genomic medicine, identifying related efforts for future collaborations, and reviewing progress overall in genomic medicine implementation.

Doctor and patient

Accomplishments in Genomic Medicine

Genomic medicine is advancing at a rapid pace. View this list of interesting developments in clinical implementation, pharmacogenomics, oncology, and more.

Learn More
DNA biomedical 3D illustration

Educational Resources in Genomic Medicine

The Genomic Medicine Working Group is compiling a list of publications that provide helpful educational resources in genomic medicine.

Learn More

Genomic Medicine Activities at NHGRI

At NHGRI, the Division of Genomic Medicine administers research programs with a clinical focus. A number of research programs currently underway are generating the evidence base, and designing and testing the implementation of genome sequencing as part of an individual's clinical care:

  • The Electronic Medical Record and Genomics (eMERGE) Network is exploring the best way to integrate genomic variant information within electronic medical records (EMR). eMERGE is also studying the ethical, legal, and social issues involved in the use of EMRs for genomics research, such as privacy, confidentiality, and communications to the public, as well as the return of actionable genomic test results to EMRs for use in clinical care.
  • The Clinical Sequencing Exploratory Research Program is exploring how best to integrate genome sequencing into clinical practice, currently with a focus in cancer and cardiovascular disease.
  • NSIGHT, a joint program with the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) will be using genome sequencing to better the understanding of disorders that occur during the newborn period.
  • The IGNITE Network includes new and ongoing successful genomic medicine projects that expand the implementation of genomic medicine. These demonstration projects incorporate genomic information into the electronic medical record and provide clinical decision support for implementation of appropriate interventions or clinical advice.
  • The Clinical Genome Resource (ClinGen) aims to collect phenotypic and clinical information on variants across the genome, develop a consensus approach to identify clinically relevant genetic variants, and disseminate information about the variants to researchers and clinicians. This resource is essential for advancing the goals of implementing genomics in clinical care and will improve the understanding of phenotypic and functional effects of genetic variants and their clinical value.
     

NHGRI's Division of Policy, Communications, and Education, is involved in helping pave the way for the widespread adoption of genomic medicine.

  • PPAB has been working with payers (both private insurers and also the Centers for Medicare and Medicaid Services) on the issue of reimbursement for new genetic and genomic tests.
  • PPAB has also been working with other federal agencies on the regulation of genomic tests, both in research and in clinical practice.
  • DPCE has been involved in promoting genetic literacy among healthcare workers through electronic resources such as the Genetics and Genomics Competency Center [genomicseducation.net] and the Global Genetics and Genomics Community [genomicscases.net].
  • My Family Health Portrait is the Web-based tool from NHGRI and the U.S. Surgeon General's Family History Initiative that helps you document your own family health history. Using any computer, an Internet connection and an up-to-date Web browser, you provide your health information to build a drawing of your family tree and a chart of your family health history. Both the chart and the drawing can be printed and shared with your family members and your doctor. Risk assessment tools for diabetes and colon cancer are also available.
  • The Inter-Society Coordinating Committee for Practitioner Education in Genomics (ISCC) facilitates interaction between NIH and professional medical societies to exchange practices and resources in clinical care. The ISCC identifies the needs of these professional societies in filling gaps in evidence and knowledge, offering partnership and available expertise to guide development of educational initiatives and applications for clinically relevant advances in genomic science.
  • Genomic Medicine Activities at NHGRI

    At NHGRI, the Division of Genomic Medicine administers research programs with a clinical focus. A number of research programs currently underway are generating the evidence base, and designing and testing the implementation of genome sequencing as part of an individual's clinical care:

    • The Electronic Medical Record and Genomics (eMERGE) Network is exploring the best way to integrate genomic variant information within electronic medical records (EMR). eMERGE is also studying the ethical, legal, and social issues involved in the use of EMRs for genomics research, such as privacy, confidentiality, and communications to the public, as well as the return of actionable genomic test results to EMRs for use in clinical care.
    • The Clinical Sequencing Exploratory Research Program is exploring how best to integrate genome sequencing into clinical practice, currently with a focus in cancer and cardiovascular disease.
    • NSIGHT, a joint program with the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) will be using genome sequencing to better the understanding of disorders that occur during the newborn period.
    • The IGNITE Network includes new and ongoing successful genomic medicine projects that expand the implementation of genomic medicine. These demonstration projects incorporate genomic information into the electronic medical record and provide clinical decision support for implementation of appropriate interventions or clinical advice.
    • The Clinical Genome Resource (ClinGen) aims to collect phenotypic and clinical information on variants across the genome, develop a consensus approach to identify clinically relevant genetic variants, and disseminate information about the variants to researchers and clinicians. This resource is essential for advancing the goals of implementing genomics in clinical care and will improve the understanding of phenotypic and functional effects of genetic variants and their clinical value.
       

    NHGRI's Division of Policy, Communications, and Education, is involved in helping pave the way for the widespread adoption of genomic medicine.

    • PPAB has been working with payers (both private insurers and also the Centers for Medicare and Medicaid Services) on the issue of reimbursement for new genetic and genomic tests.
    • PPAB has also been working with other federal agencies on the regulation of genomic tests, both in research and in clinical practice.
    • DPCE has been involved in promoting genetic literacy among healthcare workers through electronic resources such as the Genetics and Genomics Competency Center [genomicseducation.net] and the Global Genetics and Genomics Community [genomicscases.net].
    • My Family Health Portrait is the Web-based tool from NHGRI and the U.S. Surgeon General's Family History Initiative that helps you document your own family health history. Using any computer, an Internet connection and an up-to-date Web browser, you provide your health information to build a drawing of your family tree and a chart of your family health history. Both the chart and the drawing can be printed and shared with your family members and your doctor. Risk assessment tools for diabetes and colon cancer are also available.
    • The Inter-Society Coordinating Committee for Practitioner Education in Genomics (ISCC) facilitates interaction between NIH and professional medical societies to exchange practices and resources in clinical care. The ISCC identifies the needs of these professional societies in filling gaps in evidence and knowledge, offering partnership and available expertise to guide development of educational initiatives and applications for clinically relevant advances in genomic science.

Last updated: May 14, 2020