Skip Navigation
NIH

Computational Genomics and Data Science Program

Lab technician

 

 

Overview

Background

Extracting knowledge from data is a defining challenge of science. Computational genomics has been an important area of focus for NHGRI since the beginning of the Human Genome Project. Today, however, advances in tools and techniques for data generation are rapidly increasing the amount of data available to researchers, particularly in genomics. This increase requires researchers to rely ever more heavily on computational and data science tools for the storage, management, analysis, and visualization of data. NHGRI's commitment to computational genomics and data science is in alignment with the general mission of the NIH Big Data to Knowledge (BD2K) initiative and similar programs. These efforts support research and development of transformative approaches and tools that maximize the integration of Big Data (like genomics data) and data science into biomedical research.

NHGRI Support

The NHGRI 2011 strategic plan identifies bioinformatics and computational biology as a cross-cutting area "broadly relevant and fundamental across the entire spectrum of genomics and genomic medicine." Projects involving a substantial element of computational genomics or data science account for almost a quarter of NHGRI's FY2017 budget; these areas are key components of many NHGRI grants and programs.

NHGRI's support for computational genomics and data science follows the general principles and priorities identified in the NHGRI Funding Policy. Particular priority is placed on "approaches generalizable across diseases and biological systems of higher order organisms." Projects focusing on a single disease are less likely to be relevant to NHGRI than those generalizable across multiple diseases.

Breadth of the NHGRI Computational Genomics and Data Science Program

Grants supported under this program span many scientific topics. These grants can be categorized usefully, though neither exhaustively nor perfectly, into "Genome Analysis Tools and Software Resources" and "Data Management Resources." This structure is further explained in the text below and illustrated in Figure 1. The program structure described below should be considered as a general and not exclusive framework for organizing grants into broad scientific categories of interest to NHGRI.

 

Genome Analysis Tools, Software and Data Management Resources

Figure 1: Breadth of the NHGRI Computational Genomics and Data Science Program

 

Genome Analysis Tools and Software Resources

*Links lead to NIH RePORTER, a database containing information concerning NIH funded grants. Each link associated with a category, will display the relevant portfolio of grants that receive funding from the NHGRI Computational Genomics and Data Science Program. 

  • Genetic variation, clinical and phenotype analyses.
    • Variation and association analyses: These projects seek to develop new and improved methods for interpreting genetic variation, associating variation with phenotypes, and analyzing population data. Key types of genetic variation include single nucleotide polymorphisms (SNPs), insertions and deletions (indels), short tandem repeats (STRs), copy-number variants (CNVs), and structural variants. Associating genetic variation with diseases and traits may require diverse analytical approaches, including analysis of population data, gene-by-gene (GxG) interactions, and gene-by-environment (GxE) interactions.
    • Clinical and phenotype analyses: Projects in this area develop new and improved methods for the management and analysis of clinical phenotype and electronic health record (EHR) data.
  • Genomic data processing and analysis tools
    • Sequencing informatics: These projects develop new and improved methods for processing, aligning, and formatting sequence reads, performing genome assembly, and extracting sequence features.
    • Function analyses: Gene regulation, gene expression, epigenetic modifications, and methylation all shape the relationships between genes and phenotypes. Projects in this category seek to facilitate the use of these and similar datatypes in genomics. This could involve anything from development of new or improved methods for handling diverse datatypes to the development and refinement of mathematical models of networks and pathways to aid in predicting functional effects of variants.
    • General genome data analysis tools: This category includes grants performing genome data analysis not covered in the other categories. Topics in this area include, among others, statistical methods for pattern recognition, applications to make genomics analysis more secure and efficient, and other tools to improve the usability and impact of genomics data.
  • Informatics platforms for genome analyses: These projects develop informatics systems and integrated computational environments. These software suites and web-based platforms enable the management, analysis, and visualization of genomic data using advanced statistical and informatics approaches.
Data Management Resources
CGDS Program Workshop Report

NHGRI held an Informatics and Data Science-focused workshop on Sept 29-30, 2016, in Bethesda, MD. The goal of the workshop was to identify and prioritize opportunities of significance to the NHGRI Computational Genomics and Data Science Program over the next 3-5 years. A report outlined the opportunities that were identified through the course of this workshop and this was presented to the NHGRI council in May 2017.

Funding Opportunities

Investigators interested in submitting applications to NHGRI are encouraged to contact NHGRI program staff before submission to discuss their specific aims and their choice of Funding Opportunity Announcement (FOA). Contact information for NHGRI program staff is at the bottom of this page.

Research Project Grant (Parent R01 and Parent R21): Many applications are received through the Parent R01 (PA-16-160) and Parent R21 (PA-16-161) solicitations. These investigator-initiated grants allow researchers to target their specific area of science relevant to NHGRI's mission (per the NHGRI Funding Policy).

Genomic Resource Grants for Community Resource Projects (U24): PAR-17-273 is tightly focused on supporting major genomic resources, including those in informatics. Potential applicants are strongly encouraged to contact NHGRI Program Staff before developing an application.

The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) (U24):  RFA-HG-17-011 aims to create an interoperable cloud based resource for the research community by co-locating data, storage and computing infrastructure with commonly used services and tools for analyzing and sharing data.

Learn more about AnVIL at Analysis, Visualization, and Informatics Lab (AnVIL)

SBIR/STTR: Funding opportunities for Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants can be found at https://sbir.nih.gov/funding.

Other Relevant NIH Funding Opportunities

NHGRI's Funding Opportunities page links to various NHGRI funding opportunities and provides instructions for signing up for NHGRI's funding opportunities email list.

The trans-NIH Big Data to Knowledge (BD2K) program was launched in 2012 "to enable biomedical research as a digital research enterprise, to facilitate discovery and support new knowledge, and to maximize community engagement." NHGRI is collaborating with other ICs to establish an NIH data commons.

The webpage of the Biomedical Information Science and Technology Initiative (BISTI) provides links to various informatics-related funding opportunities across NIH and other Federal agencies.

Program Staff

Program Directors

Valentina Di Francesco, M.S.
E-mail: Valentina.Difrancesco@nih.gov

Daniel Gilchrist, Ph.D.
E-mail: daniel.gilchrist@nih.gov

Chris Wellington, B.S.
E-mail: wellingtonc@mail.nih.gov

Program Analyst

Robert Fullem
E-mail: Robert.fullem@nih.gov

Address

National Human Genome Research Institute
National Institutes of Health
5635 Fishers Lane
Suite 4076, MSC 9305
Bethesda, MD 20892-9305

Phone: (301) 496-7531
Fax: (301) 480-2770

Top of page

Last Updated: August 4, 2017